Bài 21 trang 197 SGK Đại số và Giải tích 12 Nâng cao


Tìm số phức B để phương trình bậc hai

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Giải phương trình: \(\left( {{z^2} + i} \right)\left( {{z^2} - 2iz - 1} \right) = 0\)

Phương pháp giải:

Sử dụng phương pháp giải phương trình tích 

\(AB = 0 \Leftrightarrow \left[ \begin{array}{l}
A = 0\\
B = 0
\end{array} \right.\)

Lời giải chi tiết:

Nhận xét:

\({\left( {1 - i} \right)^2} = 1 - 2i - 1 =  - 2i \) \(\Rightarrow \frac{{{{\left( {1 - i} \right)}^2}}}{2} =  - i \) \(\Rightarrow {\left( {\frac{{1 - i}}{{\sqrt 2 }}} \right)^2} =  - i\)

Suy ra \(–i\) có căn bậc hai \( \pm {\frac{{1 - i}}{{\sqrt 2 }}}\)

Ta có \(\left( {{z^2} + i} \right)\left( {{z^2} - 2iz - 1} \right) = 0 \) \(\Leftrightarrow \left[ \matrix{  {z^2} + i = 0 \hfill \cr  {z^2} - 2iz - 1 = 0 \hfill \cr}  \right.\)

* \({z^2} + i = 0 \Leftrightarrow {z^2} =  - i \) \(\Leftrightarrow z =  \pm {\frac{{1 - i}}{{\sqrt 2 }}}\)

* \({z^2} - 2iz - 1 = 0\) \( \Leftrightarrow {z^2} - 2iz + {i^2} = 0\) \( \Leftrightarrow {\left( {z - i} \right)^2} = 0 \) \( \Leftrightarrow z = i\)

Vậy \(S = \left\{ {i;\pm {\frac{{1 - i}}{{\sqrt 2 }}} } \right\}\)

LG b

Tìm số phức B để phương trình bậc hai \({z^2} + Bz + 3i = 0\) có tổng bình phương hai nghiệm bằng 8.

Phương pháp giải:

Sử dụng định lí Viet 

\(\left\{ \begin{array}{l}
{z_1} + {z_2} = - \frac{B}{A}\\
{z_1}{z_2} = \frac{C}{A}
\end{array} \right.\)

Lời giải chi tiết:

Gọi \({z_1},{z_2}\) là hai nghiệm của phương trình

Theo giả thiết tổng bình phương hai nghiệm bằng 8 nên ta có: \({z_1}^2 + {z_2}^2 = 8\)

Theo định lí Vi-et ta có: 

\(\left\{ \matrix{
{z_1} + {z_2} = - B \hfill \cr 
{z_1}.{z_2} = 3i \hfill \cr} \right.\)

\(\eqalign{
& {z_1}^2 + {z_2}^2 = 8 \cr &\Leftrightarrow {\left( {{z_1} + {z_2}} \right)^2} - 2{z_1}.{z_2} = 8 \cr 
& \Leftrightarrow {\left( { - B} \right)^2} - 2.3i = 8 \cr 
& \Leftrightarrow {B^2} = 8 + 6i \cr 
& \Leftrightarrow {B^2} = 9 + 2.3.i + {i^2} \cr 
& \Leftrightarrow {B^2} = {\left( {3 + i} \right)^2} \cr 
& \Leftrightarrow B = \pm \left( {3 + i} \right) \cr} \)

  Loigiaihay.com


Bình chọn:
3.3 trên 4 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài