Bài 25 trang 199 SGK Đại số và Giải tích 12 Nâng cao


Tìm các số thực b, c để phương trình

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Tìm các số thực b, c để phương trình (với ẩn z): \({z^2} + bz + c = 0\) nhận \(z = 1 + i\) làm một nghiệm.

Phương pháp giải:

Phương trình \(f(z)=0\) nhận \(z=z_0\) làm nghiệm nếu \(f(z_0)=0\)

Lời giải chi tiết:

\(1 + i\) là một nghiệm của phương trình \({z^2} + bz + c = 0\) khi và chỉ khi

\({\left( {1 + i} \right)^2} + b\left( {1 + i} \right) + c = 0\) \( \Leftrightarrow 1 + 2i - 1 + b + bi + c = 0\) \( \Leftrightarrow 2i + b + bi + c = 0\)

\( \Leftrightarrow b + c + \left( {2 + b} \right)i = 0\) \( \Leftrightarrow \left\{ \matrix{  b + c = 0 \hfill \cr  2 + b = 0 \hfill \cr}  \right.\) \( \Leftrightarrow \left\{ \matrix{  b =  - 2 \hfill \cr  c = 2 \hfill \cr}  \right.\)

LG b

Tìm các số thực a, b, c để phương trình (với ẩn z):

\({z^3} + a{z^2} + bz + c = 0\)

nhận \(z = 1 + i\) làm nghiệm và cũng nhận \(z = 2\) là nghiệm.

Lời giải chi tiết:

\(1 + i\) là một nghiệm của \({z^3} + a{z^2} + bz + c = 0\)  khi và chỉ khi

\({\left( {1 + i} \right)^3} + a{\left( {1 + i} \right)^2} + b\left( {1 + i} \right) + c = 0 \) \( \Leftrightarrow \left( {1 + 3i + 3{i^2} + {i^3}} \right) + a\left( {1 + 2i - 1} \right) \) \(+ b + bi + c = 0\) \( \Leftrightarrow \left( {1 + 3i - 3 - i} \right) + a.2i \) \(+ b + bi + c = 0\) \( \Leftrightarrow  - 2 + 2i + 2ai + b + c + bi = 0\)

\(\Leftrightarrow \left( {b + c - 2} \right)+\left( {2 + 2a + b} \right)i = 0\)

\( \Leftrightarrow \left\{ \matrix{  b + c - 2 = 0\,\,\,\,\,\,\,\,\left( 1 \right) \hfill \cr  2a + b + 2 = 0\,\,\,\,\,\left( 2 \right) \hfill \cr}  \right.\)

\(2\) là nghiệm của \({z^3} + a{z^2} + bz + c = 0\) khi và chỉ khi \(8 + 4a + 2b + c = 0\,\,\,\left( 3 \right)\)

Từ (1), (2), (3) ta có hệ: .\(\left\{ \matrix{  b + c = 2 \hfill \cr  2a + b =  - 2 \hfill \cr  4a + 2b + c =  - 8 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  a =  - 4 \hfill \cr  b = 6 \hfill \cr  c =  - 4 \hfill \cr}  \right.\) 

Loigiaihay.com


Bình chọn:
3.6 trên 5 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài