Bài 23 trang 199 SGK Đại số và Giải tích 12 Nâng cao


Tìm nghiệm phức phương trình

Lựa chọn câu để xem lời giải nhanh hơn

Tìm nghiệm phức phương trình \(z + {1 \over z} = k\) trong các trường hợp sau:

LG a

a) \(k = 1\);

Phương pháp giải:

- Tính \(\Delta \).

- Sử dụng công thức nghiệm 

\({z_{1,2}} = \dfrac{{ - B \pm \delta }}{{2A}}\) với \(\delta \) là một căn bậc hai của \(\Delta \).

Lời giải chi tiết:

a) \(k = 1\) ta có phương trình \(z + \dfrac{1}{z} = 1 \Leftrightarrow {z^2} - z + 1 = 0\)

Có \(\Delta  = 1 - 4 =  - 3\) nên phương trình có hai nghiệm \({z_{1,2}} = \dfrac{{1 \pm i\sqrt 3 }}{2}\)

LG b

b) \(k = \sqrt 2 \)

Lời giải chi tiết:

b) \(k = \sqrt 2 \) ta có phương trình \(z + \dfrac{1}{z} = \sqrt 2  \Leftrightarrow {z^2} - \sqrt 2 z + 1 = 0\)

Có \(\Delta  = 2 - 4 =  - 2\) nên phương trình có hai nghiệm \({z_{1,2}} = \dfrac{{\sqrt 2  \pm i\sqrt 2 }}{2}\)

LG c

c) \(k = 2i\)

Lời giải chi tiết:

c) \(k = 2i\) ta có phương trình \(z + \dfrac{1}{z} = 2i \Leftrightarrow {z^2} - 2iz + 1 = 0\)

Có \(\Delta  = {\left( {2i} \right)^2} - 4 =  - 8\) nên phương trình có hai nghiệm \({z_{1,2}} = \dfrac{{2i \pm 2i\sqrt 2 }}{2} = \left( {1 \pm \sqrt 2 } \right)i\)

Loigiaihay.com


Bình chọn:
3.7 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài