Lý thuyết Phép cộng, phép trừ các số tự nhiên Toán 6 Cánh diều


Lý thuyết Phép cộng, phép trừ các số tự nhiên Toán 6 Cánh diều ngắn gọn, đầy đủ, dễ hiểu

 

1. Phép cộng

\(a + b = c\)

(số hạng) + (số hạng) = (tổng)

Minh họa trên tia số:

Phép cộng 2+4=6: tổng hai tia bên trên bằng tia bên dưới.

Tính chất của phép cộng:

Giao hoán: \[a + b = b + a\]

Kết hợp: \(\left( {a + b} \right) + c = a + \left( {b + c} \right) = a + b + c\)

 \(a + b + c\) được gọi là tổng của ba số \(a,b,c\)

Cộng với số 0: \[a + 0 = 0 + a = a\]

Lưu ý: Khi cộng nhiều số, ta nên nhóm các số hạng có tổng là số chẵn tròn chụctròn trăm,...(nếu có).

Ví dụ:

Tính một cách hợp lí: 12+25+15+28

Nhận xét: Ta thấy nếu tính riêng 12+28 và 25+15 thì được: 12+28=40 và 25+15=40 kết quả của hai phép tính này là tròn chục nên ta thực hiện phép tính sau:

12+25+15+28

= 12+28+25+15 (Đổi vị trí của các số 25, 15, 28: Tính chất giao hoán)

= (12+28)+(25+15) (Kết hợp)

= 40+40

= 80

2. Phép trừ

Cho hai số tự nhiên \[a\]  và \[b,\]  nếu có số tự nhiên \[x\]  sao cho \[b + x = a\] thì ta có phép trừ

\[a - b = x\]

(số bị trừ) - (số trừ) = (hiệu)

Chú ý: Điều kiện để thực hiện được phép trừ là số bị trừ lớn hơn hoặc bằng số trừ.

Minh họa trên tia số:

 


Bình chọn:
4.9 trên 7 phiếu