Lý thuyết đường tiệm cận


Cho hàm số y = f(x) có đồ thị (C).

Cho hàm số \(y = f(x)\) có đồ thị \((C)\).

1. Tiệm cận đứng

Đường thẳng \(x=a\) là đường tiệm cận đứng của \((C)\) nếu ít nhất một trong bốn điều kiện sau được thoả mãn:

\(\eqalign{
& \mathop {\lim }\limits_{x \to {a^ + }} f(x) = + \infty \cr
& \mathop {\lim }\limits_{x \to {a^ + }} f(x) = - \infty \cr
& \mathop {\lim }\limits_{x \to {a^ - }} f(x) = + \infty \cr
& \mathop {\lim }\limits_{x \to {a^ - }} f(x) = - \infty \cr} \)

2. Tiệm cận ngang

Đường thẳng \(y = b\) là tiệm cận ngang của \((C)\) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } f(x) = b \cr
& \mathop {\lim }\limits_{x \to - \infty } f(x) = b \cr} \)

3. Chú ý

- Đồ thị hàm đa thức không có tiệm cận đứng và tiệm cận ngang, do đó trong các bài toán khảo sát và vẽ đồ thị hàm đa thức, ta không cần tìm các tiệm cận này.

Loigiaihay.com


Bình chọn:
4 trên 11 phiếu

Các bài liên quan: - Bài 4. Đường tiệm cận

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài