Bài 1 trang 30 SGK Giải tích 12

Bình chọn:
4.3 trên 12 phiếu

Giải bài 1 trang 30 SGK Giải tích 12. Tìm các tiệm cận của đồ thị hàm số:

Đề bài

Tìm các tiệm cận của đồ thị hàm số:

a)  \(y=\frac{x}{2-x}\).                          b) \(y=\frac{-x+7}{x+1}\).

c)  \(y=\frac{2x-5}{5x-2}\).                         d) \(y=\frac{7}{x}-1\).

Phương pháp giải - Xem chi tiết

Sử dụng định nghĩa đường tiệm cận của hàm số: Cho hàm số \(y = f\left( x \right)\) xác định trên một khoảng vô hạn (là khoảng có dạng \(\left( {a; + \infty } \right),\,\,\left( { - \infty ;b} \right)\) hoặc \(\left( { - \infty ; + \infty } \right)\)). 

- Đường thẳng \(y=y_0\) là đường tiệm cận ngang của đồ thị hàm số \(y = f\left( x \right)\) nếu ít nhất một trong các điều kiện sau thỏa mãn: \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = {y_0};\,\,\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = {y_0}\).

- Đường thẳng \(x=x_0\) là đường tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right)\) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty ;\,\,\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty \\\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty ;\,\,\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty \end{array}\)

Lời giải chi tiết

a) Ta có: \(\mathop {\lim }\limits_{x \to {2^ - }} {x \over {2 - x}} =  + \infty ;\,\,\mathop {\lim }\limits_{x \to {2^ + }} {x \over {2 - x}} =  - \infty \) nên đường thẳng \(x = 2\) là tiệm cận đứng của đồ thị hàm số.

Ta có: \(\mathop {\lim }\limits_{x \to  + \infty } {x \over {2 - x}} =  - 1;\,\,\mathop {\lim }\limits_{x \to  - \infty } {x \over {2 - x}} =  - 1\) nên đường thẳng \(y = -1\) là tiệm cận ngang của đồ thị hàm số.

b) Ta có: \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \frac{{ - x + 7}}{{x + 1}} = + \infty ;\,\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} \frac{{ - x + 7}}{{x + 1}} = - \infty\) nên \(x=-1\) là tiệm cận đứng của đồ thị hàm số.

Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \frac{{ - x + 7}}{{x + 1}} = - 1;\,\mathop {\lim }\limits_{x \to - \infty } \frac{{ - x + 7}}{{x + 1}} = - 1\) nên đường thẳng \(y=-1\) là tiệm cận ngang của đồ thị hàm số.

c) Ta có: \(\mathop {\lim }\limits_{x \to {{\left( {\frac{2}{5}} \right)}^ + }} \frac{{2x - 5}}{{5x - 2}} = - \infty ;\,\mathop {\lim }\limits_{x \to {{\left( {\frac{2}{5}} \right)}^ - }} \frac{{2x - 5}}{{5x - 2}} = + \infty\) nên đường thẳng \(x=\frac{2}{5}\) là tiệm cận đứng của đồ thị hàm số.

Ta có: \(\mathop {\lim }\limits_{x \to - \infty } \frac{{2x - 5}}{{5x - 2}} = \frac{2}{5};\,\mathop {\lim }\limits_{x \to + \infty } \frac{{2x - 5}}{{5x - 2}} = \frac{2}{5}\) nên đồ thị hàm số nhận đường thẳng \(y=\frac{2}{5}\) làm tiệm cận ngang.

d) Ta có: \(\mathop {\lim }\limits_{x \to {0^ + }} \left( {\frac{7}{x} - 1} \right) = + \infty ;\,\mathop {\lim }\limits_{x \to {0^ - }} \left( {\frac{7}{x} - 1} \right) = - \infty\) nên đường thẳng \(x=0\) là tiệm cận đứng của đồ thị hàm số.

Ta có: \(\mathop {\lim }\limits_{x \to - \infty } \left( {\frac{7}{x} - 1} \right) = - 1;\,\mathop {\lim }\limits_{x \to + \infty } \left( {\frac{7}{x} - 1} \right) = - 1\) nên đường thẳng \(y=-1\) là tiệm cận ngang của đồ thị hàm số.

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan