Phần câu hỏi bài 8 trang 25 Vở bài tập toán 8 tập 1


Giải phần câu hỏi bài 8 trang 25 VBT toán 8 tập 1. Khoanh tròn vào chữ cái trước kết quả đúng. Phân tích đa thức x^2 - y^2 + 5x - 5y ta được kết quả...

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Câu 24.

Khoanh tròn vào chữ cái trước kết quả đúng. Phân tích đa thức \({x^2} - {y^2} + 5x - 5y\)  ta được kết quả

\(\begin{array}{l}(A)\,\,\left( {x - y} \right)\left( {x + y + 5} \right)\\(B)\,\,\left( {x + y} \right)\left( {x - y - 5} \right)\\(C)\,\,\left( {x - y} \right)\left( {x + y - 5} \right)\\(D)\,\,\left( {x - y} \right)\left( {x - y - 5} \right)\end{array}\) 

Phương pháp giải:

- Nhóm hạng tử thứ nhất và hạng tử thứ hai; hạng tử thứ ba và hạng tử thứ tư.

- Áp dụng hằng đẳng thức: \({A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right)\) 

Lời giải chi tiết:

\(\begin{array}{l}{x^2} - {y^2} + 5x - 5y\\ = \left( {{x^2} - {y^2}} \right) + \left( {5x - 5y} \right)\\ = \left( {x - y} \right)\left( {x + y} \right) + 5\left( {x - y} \right)\\ = \left( {x - y} \right)\left( {x + y + 5} \right)\end{array}\) 

Chọn A.

Câu 25.

Khoanh tròn vào chữ cái trước kết quả đúng.

Cho \(2{x^2} - 4x + 2 = \left( {x - 1} \right)\left( {x + 5} \right)\)  thì ta được:

\(\begin{array}{l}(A)\,\,x = 1\,\,\,\,(B)\,\,x =  - 1\\(C)\,\,x = 7\,\,\,\,\,\,(D)\,\,x = 1\,\,\text{hoặc}\,\,x = 7\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\end{array}\) 

Phương pháp giải:

- Đưa các đẳng thức về dạng \(A(x) = 0\)

- Phân tích đa thức ở vế trái thành nhân tử. 

- Áp dụng hằng đẳng thức: \({\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\)

- Áp dụng tính chất đa thức bằng 0 nếu nó chứa nhân tử bằng 0.

\(B\left( x \right)C\left( x \right) = 0 \Rightarrow \left[ \begin{array}{l}B\left( x \right) = 0\\C\left( x \right) = 0\end{array} \right.\)

Lời giải chi tiết:

\(\begin{array}{l}2{x^2} - 4x + 2 = \left( {x - 1} \right)\left( {x + 5} \right)\\2\left( {{x^2} - 2x + 1} \right) - \left( {x - 1} \right)\left( {x + 5} \right) = 0\\2{\left( {x - 1} \right)^2} - \left( {x - 1} \right)\left( {x + 5} \right) = 0\\\left( {x - 1} \right)\left[ {2\left( {x - 1} \right) - \left( {x + 5} \right)} \right] = 0\\\left( {x - 1} \right)\left( {2x - 2 - x - 5} \right) = 0\\\left( {x - 1} \right)\left( {x - 7} \right) = 0\\ \Rightarrow \left[ \begin{array}{l}x - 1 = 0\\x - 7 = 0\end{array} \right. \Rightarrow \left[ \begin{array}{l}x = 1\\x = 7\end{array} \right.\end{array}\)

Chọn D. 

Câu 26.

Nối một đa thức ở cột bên trái với một đa thức ở cột phải để được đẳng thức đúng.

 

Phương pháp giải:

- Phân tích các đa thức ở cột bên trái bằng phương pháp dùng hằng đẳng thức hoặc nhóm, sau đó so sánh kết quả phân tích với các đa thức ở cột bên phải.

- Áp dụng hằng đẳng thức: 

\(\begin{array}{l}{\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\\{A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right)\\{A^3} - {B^3} = \left( {A - B} \right)({A^2} + AB + {B^2})\end{array}\)

Lời giải chi tiết:

\(\begin{array}{l}1)\,\,{\left( {a + b} \right)^3} - 8 = {\left( {a + b} \right)^3} - {2^3}\\ = \left( {a + b - 2} \right)\left[ {{{\left( {a + b} \right)}^2} + 2\left( {a + b} \right) + {2^2}} \right]\\ = \left( {a + b - 2} \right)\left( {{a^2} + 2ab + {b^2} + 2a + 2b + 4} \right)\end{array}\) 

\(\begin{array}{l}2)\,\,{a^2} - {b^2} + 6a + 9\\ = \left( {{a^2} + 6a + 9} \right) - {b^2}\\ = \left( {a + 2.a.3 + {3^2}} \right) - {b^2}\\ = {\left( {a + 3} \right)^2} - {b^2}\\ = \left( {a + 3 + b} \right)\left( {a + 3 - b} \right)\end{array}\)

\(\begin{array}{l}3)\,\,{a^5} + {a^4}x - ay - xy\\ = \left( {{a^5} + {a^4}x} \right) - \left( {ay + xy} \right)\\ = {a^4}\left( {a + x} \right) - y\left( {a + x} \right)\\ = \left( {a + x} \right)\left( {{a^4} - y} \right)\end{array}\)

\(\begin{array}{l}4)\,\,{a^4} - 3{a^3} - 27a + 81\\ = \left( {{a^4} - 27a} \right) - \left( {3{a^3} - 81} \right)\\ = a\left( {{a^3} - 27} \right) - 3\left( {{a^3} - 27} \right)\\ = \left( {{a^3} - 27} \right)\left( {a - 3} \right)\\ = \left( {{a^3} - {3^3}} \right)\left( {a - 3} \right)\\ = \left( {a - 3} \right)\left( {{a^2} + 3a + 9} \right)\left( {a - 3} \right)\\ = {\left( {a - 3} \right)^2}\left( {{a^2} + 3a + 9} \right)\end{array}\)

Ta nối như sau:

1 – d; 2 – a; 3 – b; 4 – c.

Loigiaihay.com


Bình chọn:
4.2 trên 10 phiếu

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí