Phần câu hỏi bài 5 trang 17, 18 Vở bài tập toán 8 tập 1


Giải phần câu hỏi bài 5 trang 17, 18 VBT 8 tập 1. Đánh dấu “x” vào ô là đáp án đúng của tích (2x +3y)(4x^2-6xy +9y^2)...

Lựa chọn câu để xem lời giải nhanh hơn

Câu 14.

Đánh dấu “x” vào ô là đáp án đúng của tích \(\left( {2x + 3y} \right)\left( {4{x^2} - 6xy + 9{y^2}} \right)\)

\(8{x^3} - 27{y^3}\)

 

\(8{x^3} + 27{y^3}\)

 

\({\left( {2x + 3y} \right)^3}\)

 

\({\left( {2x - 3y} \right)^3}\)

  

Phương pháp giải:

Áp dụng hằng đẳng thức:

\({A^3} + {B^3} = \left( {A + B} \right)({A^2} - AB + {B^2})\) 

Giải chi tiết:

\(\begin{array}{l}\left( {2x + 3y} \right)\left( {4{x^2} - 6xy + 9{y^2}} \right)\\ = \left( {2x + 3y} \right)\left[ {{{\left( {2x} \right)}^2} - \left( {2x} \right).3y + {{\left( {3y} \right)}^2}} \right]\\ = {\left( {2x} \right)^3} + {\left( {3y} \right)^3} \\= 8{x^3} + 27{y^3}\end{array}\) 

Do đó ta có

\(8{x^3} - 27{y^3}\)

 

\(8{x^3} + 27{y^3}\)

X

\({\left( {2x + 3y} \right)^3}\)

 

\({\left( {2x - 3y} \right)^3}\)

 

 

Câu 15.

Khoanh tròn vào chữ cái trước đẳng thức sai

\((A)\,\,{\left( {x + y} \right)^3} - 3xy\left( {x + y} \right) = {x^3} + {y^3}\)

\((B)\,\,{\left( {x - y} \right)^3} + 3xy\left( {x + y} \right) = {x^3} - {y^3}\)

\((C)\,\,\left( {{x^2} - {y^2}} \right)\left( {{x^2} + xy + {y^2}} \right)\left( {{x^2} - xy + {y^2}} \right) \)\(= {x^6} - {y^6}\)

\((D)\,\,{\left( {x - 2} \right)^3} + {\left( {x + 2} \right)^3} = 2x\left( {{x^2} + 12} \right)\) 

Phương pháp giải:

Áp dụng hằng đẳng thức: 

\(\begin{array}{l}{\left( {A - B} \right)^3} = {A^3} - 3{A^2}B + 3A{B^2} - {B^3}\\{A^3} + {B^3} = \left( {A + B} \right)({A^2} - AB + {B^2})\end{array}\)

Giải chi tiết:

\((A)\,{\left( {x + y} \right)^3} - 3xy\left( {x + y} \right)\)

\( = {x^3} + 3{x^2}y + 3x{y^2} \)\(+ {y^3} - 3{x^2}y - 3x{y^2}\)

\(= {x^3} + {y^3}\)

\((B)\,\,{\left( {x - y} \right)^3} \)\(+ 3xy\left( {x + y} \right)\)

\( = {x^3} - 3{x^2}y + 3x{y^2}\)\( - {y^3} + 3{x^2}y + 3x{y^2}\)

\(= {x^3} + 6x{y^2} - {y^3}\)

\((C)\,\left( {{x^2} - {y^2}} \right).\left( {{x^2} + xy + {y^2}} \right)\)\(.\left( {{x^2} - xy + {y^2}} \right)\) 

\(= \left( {x - y} \right)\left( {x + y} \right)\left( {{x^2} + xy + {y^2}} \right)\)\(.\left( {{x^2} - xy + {y^2}} \right)\)

\(= \left[ {\left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right)} \right]\)\(.\left[ {\left( {x + y} \right)\left( {{x^2} - xy + {y^2}} \right)} \right]\)

\(= \left( {{x^3} - {y^3}} \right)\left( {{x^3} + {y^3}} \right)\)

\(= {\left( {{x^3}} \right)^2} - {\left( {{y^3}} \right)^2} \)\(= {x^6} - {y^6}\)

\((D)\,{\left( {x - 2} \right)^3} + {\left( {x + 2} \right)^3}\)

\(= \left[ {\left( {x - 2} \right) + \left( {x + 2} \right)} \right]\)\(.\left[ {{{\left( {x - 2} \right)}^2} - \left( {x - 2} \right)\left( {x + 2} \right) + {{\left( {x + 2} \right)}^2}} \right]\)

\(= 2x\left[ {{{\left( {x - 2} \right)}^2} - \left( {{x^2} - {2^2}} \right) + {{\left( {x + 2} \right)}^2}} \right]\)

\(= 2x\left( {{x^2} - 2.x.2 + {2^2} - {x^2} + 4 + {x^2} + 2.x.2 + {2^2}} \right)\)

\(= 2x\left( {{x^2} - 4x + 4 - {x^2} + 4 + {x^2} + 4x + 4} \right)\)\( = 2x\left( {{x^2} + 12} \right)\)

Chọn B.

Câu 16.

Khoanh tròn vào chữ cái trước kết quả đúng. Cho \(x + y = 1\,,\)  giá trị của biểu thức \({x^3} + {y^3} + 3xy + 2007\) là

\(\begin{array}{l}(A)\,\,2009\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(B)\,\,2010\\(C)\,\,2008\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(D)\,\,2011\end{array}\) 

Phương pháp giải:

Áp dụng hằng đẳng thức:

\({\left( {A + B} \right)^3} = {A^3} + 3{A^2}B + 3A{B^2} + {B^3}\) 

Giải chi tiết:

\({x^3} + {y^3} + 3xy + 2007\\ = {x^3} + 3{x^2}y + 3x{y^2} + {y^3} \)\(- 3{x^2}y - 3x{y^2} + 3xy + 2007\)\(= \left( {{x^3} + 3{x^2}y + 3x{y^2} + {y^3}} \right) \)\(- 3xy\left( {x + y} \right) + 3xy + 2007\)\( = {\left( {x + y} \right)^3} - 3xy\left( {x + y} \right) + 3xy + 2007\)

Thay \(x + y = 1\,\) vào biểu thức ta được:

\({1^3} - 3xy.1 + 3xy + 2007 \)\(= 1 - 3xy + 3xy + 2007 = 2008\) 

Chọn C.

Câu 17.

Nối một đa thức ở cột bên trái với một đa thức ở cột bên phải để được đẳng thức đúng

 

Phương pháp giải:

Áp dụng hằng đẳng thức:

\(\begin{array}{l}{A^3} + {B^3} = \left( {A + B} \right)({A^2} - AB + {B^2})\\{A^3} - {B^3} = \left( {A - B} \right)({A^2} + AB + {B^2})\end{array}\) 

Giải chi tiết:

\(1)\,\,\left( {x + y} \right)\left( {{x^2} - xy + {y^2}} \right)\)\( - \left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right)\)\( = {x^3} + {y^3} - \left( {{x^3} - {y^3}} \right)\)\( = {x^3} + {y^3} - {x^3} + {y^3} = 2{y^3}\)

\(\begin{array}{l}2)\,\,{x^6} + {y^6} = {\left( {{x^2}} \right)^3} + {\left( {{y^2}} \right)^3}\\ = \left( {{x^2} + {y^2}} \right)\left( {{x^4} - {x^2}{y^2} + {y^4}} \right)\end{array}\)

\(\begin{array}{l}3)\,\,{x^6} - {y^6} = {\left( {{x^2}} \right)^3} - {\left( {{y^2}} \right)^3}\\ = \left( {{x^2} - {y^2}} \right)\left( {{x^4} + {x^2}{y^2} + {y^4}} \right)\end{array}\)

\(\begin{array}{l}4)\,\,{x^3} - 27 = {x^3} - {3^3}\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right)\end{array}\)

Ta có: 1 – c; 2 – e; 3 – a; 4 – b.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.2 trên 5 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài