Bài 3.66 trang 135 SBT hình học 12


Giải bài 3.66 trang 135 sách bài tập hình học 12. Trong không gian Oxyz, cho bốn điểm A(6; -2; 3), B(0; 1; 6), C(2; 0 ; -1), D(4; 1; 0). Gọi (S) là mặt cầu đi qua bốn điểm A, B, C, D. Hãy viết phương trình mặt phẳng tiếp xúc với mặt cầu (S) tại điểm A.

Đề bài

Trong không gian Oxyz, cho bốn điểm \(A(6; -2; 3), B(0; 1; 6), C(2; 0 ; -1), D(4; 1; 0)\). Gọi (S) là mặt cầu  đi qua bốn điểm A, B, C, D. Hãy viết phương trình mặt phẳng tiếp xúc với mặt cầu (S) tại điểm A.

Phương pháp giải - Xem chi tiết

- Gọi \(I\) là tâm của mặt cầu, sử dụng điều kiện \(IA = IB = IC = ID\) tìm tọa độ điểm \(I\).

- Mặt phẳng \(\left( P \right)\) tiếp xúc với \(\left( S \right)\) tại \(A\) nên nhận \(\overrightarrow {IA} \) làm VTPT.

Lời giải chi tiết

Tâm I(x, y, z) của (S) có tọa độ là nghiệm của hệ phương trình

\(\left\{ {\begin{array}{*{20}{c}}{I{A^2} = I{B^2}}\\{I{A^2} = I{C^2}}\\{I{A^2} = I{D^2}}\end{array}} \right.\) \( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{{(x - 6)}^2} + {{(y + 2)}^2} + {{(z - 3)}^2} = {x^2} + {{(y - 1)}^2} + {{(z - 6)}^2}}\\{{{(x - 6)}^2} + {{(y + 2)}^2} + {{(z - 3)}^2} = {{(x - 2)}^2} + {y^2} + {{(z + 1)}^2}}\\{{{(x - 6)}^2} + {{(y + 2)}^2} + {{(z - 3)}^2} = {{(x - 4)}^2} + {{(y - 1)}^2} + {z^2}}\end{array}} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{12x - 6y - 6z = 12}\\{8x - 4y + 8z = 44}\\{4x - 6y + 6z = 32}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{2x - y - z = 2}\\{2x - y + 2z = 11}\\{2x - 3y + 3z = 16}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 2}\\{y =  - 1}\\{z = 3}\end{array}} \right.\)

Vậy mặt cầu (S) có tâm I(2; -1; 3).

Mặt phẳng \((\alpha )\) tiếp xúc với (S) tại A nên \((\alpha )\) có vecto pháp tuyến là  \(\overrightarrow {IA}  = (4; - 1;0)\)

Phương trình mặt phẳng \((\alpha )\) là 4(x – 6) – (y  +2) = 0 hay 4x – y – 26 = 0.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài