Bài 3.64 trang 134 SBT hình học 12>
Giải bài 3.64 trang 134 sách bài tập hình học 12. Trong không gian Oxyz, cho hai mặt phẳng...
Đề bài
Trong không gian Oxyz, cho hai mặt phẳng \((\beta )\): \(x + 3ky – z + 2 = 0\) và \((\gamma )\) : \(kx – y + z + 1 = 0\). Tìm \(k\) để giao tuyến của \((\beta )\) và \((\gamma )\) vuông góc với mặt phẳng \((\alpha )\): x – y – 2z + 5 = 0.
Phương pháp giải - Xem chi tiết
- Tìm VTCP của đường thẳng giao tuyến \(\overrightarrow a = \left[ {\overrightarrow {{n_\beta }} ,\overrightarrow {{n_\gamma }} } \right]\).
- Sử dụng điều kiện đường thẳng vuông góc với mặt phẳng thì \(\overrightarrow a \) cùng phương \(\overrightarrow {{n_\alpha }} \).
Lời giải chi tiết
Ta có \(\overrightarrow {{n_\beta }} = (1;3k; - 1)\) và \(\overrightarrow {{n_\gamma }} = (k; - 1;1)\). Gọi \(d = (\beta ) \cap (\gamma )\)
Đường thẳng \(d\) vuông góc với giá của \(\overrightarrow {{n_\beta }} \) và \(\overrightarrow {{n_\gamma }} \) nên có vecto chỉ phương là:
\(\overrightarrow u = \left[ {\overrightarrow {{n_\beta }} ,\overrightarrow {{n_\gamma }} } \right]\)\( = \left( {3k - 1; - k - 1; - 1 - 3{k^2}} \right)\)
Ta có: \(d \bot (\alpha )\)\( \Leftrightarrow \dfrac{{3k - 1}}{1} = \dfrac{{ - k - 1}}{{ - 1}} = \dfrac{{ - 1 - 3{k^2}}}{{ - 2}}\) \( \Leftrightarrow k = 1\)
Loigiaihay.com