Bài 31 trang 134 Vở bài tập toán 8 tập 2


Giải bài 31 trang 134 VBT toán 8 tập 2. Tính độ dài đường cao của hình chóp tứ giác đều với các kích thước cho ở hình 92c.

Đề bài

Tính độ dài đường cao của hình chóp tứ giác đều với các kích thước cho ở hình 92c.

Phương pháp giải - Xem chi tiết

Áp dụng định lý Pytago trong tam giác vuông.

Lời giải chi tiết

Theo giả thiết của bài toán đã cho ở trên, trong hình \(92c\). 

Ta có:

\(SA = SB = SC = SD = 10cm\)

\(AB = BC = CD = DA = 5cm\)

Gọi \(H\) là giao điểm hai đường chéo của đáy thì \(SH\) là chiều cao của hình chóp tứ giác đều đã cho. Ta có:

\(SHE\) là tam giác vuông tại \(H\), do đó \(SH = \sqrt {S{E^2} - H{E^2}} \).

Để tính được \(SH\) ta phải tính \(SE\) và \(HE\). 

\(SE = \sqrt {S{B^2} - B{E^2}} \) \( = \sqrt {{{10}^2} - {{\left( {\dfrac{5}{2}} \right)}^2}}  \approx 9,68\left( {cm} \right)\)

\(HE = \dfrac{{AB}}{2} = 2,5\left( {cm} \right)\)

\(SH =\sqrt {SE^2 - HE^2}\approx \sqrt {9,{{68}^2} - 2,{5^2}}  \approx 9,35\left( {cm} \right)\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.7 trên 6 phiếu

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài