
Đề bài
Cho đường tròn tâm \(O\) bán kính \(r’\). Xét hình chóp \(S.ABCD\) có \(SA\) vuông góc với mặt phẳng đáy, \(S\) và \(A\) cố định, \(SA = h\) cho trước và có đáy \(ABCD \) là một tứ giác tùy ý nội tiếp đường tròn đã cho, trong đó các đường chéo \(AC\) và \(BD\) vuông góc với nhau.
a) Tính bán kính \(r\) của mặt cầu đi qua năm đỉnh của hình chóp.
b) Hỏi đáy \(ABCD\) là hình gì để thể tích hình chóp đạt giá trị lớn nhất?
Phương pháp giải - Xem chi tiết
a) Xác định tâm mặt cầu (cách đều năm điểm \(S,A,B,C,D\)) và tính bán kính.
b) Viết công thức tính thể tích khối chóp. Đánh giá GTLN của thể thích và kết luận.
Lời giải chi tiết
a) Trong mặt phẳng chứa đường tròn tâm O ngoại tiếp tứ giác ABCD ta kẻ đường kính qua O vuông góc với dây cung AC tại I.
Ta có IA = IC và OI // BD. Gọi O’ là tâm mặt cầu đi qua 5 đỉnh của hình chóp.
Khi đó điểm O’ phải nằm trên trục d của đường tròn ngoại tiếp tứ giác ABCD.
Ta có \(\displaystyle d \bot (ABCD)\) tại O. Gọi M là trung điểm của cạnh SC.
Ta có MI // SA nên \(\displaystyle MI \bot (ABCD)\) tại I. Từ M kẻ đường thẳng d’//OI cắt d tại O’.
Vì \(\displaystyle d' \bot (SAC)\) tại M nên ta có O’C = O’S và O’C là bán kính r của mặt cầu ngoại tiếp hình chóp S.ABCD
Ta có \(\displaystyle r = O'C = \sqrt {OO{'^2} + O{C^2}} = \sqrt {M{I^2} + r{'^2}}\)
\(\displaystyle = \sqrt {{{({h \over 2})}^2} + r{'^2}} \) \(\displaystyle = {{\sqrt {{h^2} + 4r{'^2}} } \over 2}\)
b) Vì SA không đổi nên ta có VSABCD lớn nhất khi và chỉ khi SABCD lớn nhất.
Ta có \(\displaystyle {S_{ABCD}} = {1 \over 2}AC.BD\) trong đó AC và BD là hai dây cung vuông góc với nhau.
Vậy AC.BD lớn nhất khi và chỉ khi AC = BD = 2r’ , nghĩa là tứ giác ABCD là một hình vuông.
Loigiaihay.com
Giải bài 2.31 trang 63 sách bài tập hình học 12. Cho hình lập phương ABCD.A’B’C’D’ cạnh a...
Giải bài 2.32 trang 63 sách bài tập hình học 12. Hình trụ tròn xoay có bán kính đáy bằng r, có chiều cao bằng 2r và có trục là OO’.
Giải bài 2.29 trang 63 sách bài tập hình học 12. Cho tam giác vuông cân ABC có cạnh huyền AB = 2a. Trên đường thẳng d đi qua A và vuông góc với mặt phẳng (ABC), lấy một điểm S khác A, ta được tứ diện SABC.
Giải bài 2.28 trang 62 sách bài tập hình học 12. Mặt phẳng (Q) song song với mặt phẳng (P) cắt ∆ và ∆' lần lượt tại M và M’. Gọi M1 là hình chiếu vuông góc của M lên mặt phẳng (P).
Giải bài 2.27 trang 62 sách bài tập hình học 12. Trong mặt phẳng a, cho tam giác ABC vuông tại A có cạnh AC = a và có cạnh huyền BC = 2a. Cũng trong mặt phẳng đó cho nửa đường tròn đường kính AB cắt cạnh BC tại M.
Giải bài 2.26 trang 62 sách bài tập hình học 12. Cho hình chóp S.ABC và biết rằng có một mặt cầu tiếp xúc với tất cả các cạnh bên của hình chóp đồng thời tiếp xúc với ba cạnh của đáy tại trung điểm của mỗi cạnh đáy. Chứng minh hình chóp đó là hình chóp đều.
Giải bài 2.25 trang 62 sách bài tập hình học 12. Cho lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng a và có đường cao h...
Giải bài 2.24 trang 62 sách bài tập hình học 12. Cho tứ diện ABCD có và. Khi quay tất cả các cạnh của tứ diện đó quanh cạnh AB có những hình nón nào được tạo thành? Hãy kể tên các hình nón đó.
Trả lời câu hỏi và bài tập chương 2 sách giáo khoa hình học 12 mặt nón mặt trụ mặt cầu. Thế nào là một mặt tròn xoay,...
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: