Bài 2.29 trang 63 SBT hình học 12


Đề bài

Cho tam giác vuông cân ABC có cạnh huyền AB = 2a. Trên đường thẳng d đi qua A và vuông góc với mặt phẳng (ABC), lấy một điểm S khác A, ta được tứ diện SABC.

a) Xác định tâm mặt cầu ngoại tiếp tứ diện SABC.

b) Tính bán kính của mặt cầu ngoại tiếp tứ diện SABC trong trường hợp mặt phẳng (SBC) tạo với mặt phẳng (ABC) một góc bằng 300.

Phương pháp giải - Xem chi tiết

a) Tâm của mặt cầu ngoại tiếp tứ diện các đều các đỉnh.

b) Tính toán dựa vào các kiến thức hình học đã biết.

Lời giải chi tiết

a) Gọi I là trung điểm của cạnh AB.

Vì tam giác ABC vuông cân tại C nên ta có IA = IB = IC.

Vậy I là tâm đường tròn ngoại tiếp tam giác ABC. Do đó, tâm mặt cầu ngoại tiếp tứ diện SABC  phải nằm trên đường thẳng d’ vuông góc với mặt phẳng (ABC) tại I.

Ta suy ra d’ // d. Do đó  d’ cắt SB tại trung điểm O của đoạn SB. Ta có  OB = OS = OA = OC và như vậy O là tâm đường tròn ngoại tiếp tứ diện SABC.

b) Trường hợp mặt phẳng (SBC) tạo với mặt phẳng (ABC) một góc 300 thì góc của hai mặt phẳng đó chính là góc \(\widehat {SCA}\).

Thật vậy, vì \(SA \bot (ABC)\) mà \(AC \bot CB\) nên ta có \(SC \bot CB\). Do đó \(\widehat {SCA} = {30^0}\) .

Vì AB = 2a  nên ta có \(AC = a\sqrt 2 \) ta suy ra \(SA = AC.\tan {30^0} = a\sqrt 2 .{{\sqrt 3 } \over 3} = {{a\sqrt 6 } \over 3}\).

Gọi r là bán kính mặt cầu ngoại tiếp tứ diện khi \(\widehat {SCA} = {30^0}\) .

Ta có \(r = {{SB} \over 2} = OA = OB = OC = {\rm{OS}}\), trong đó SB2 = SA2 + AB2

Vậy \(S{B^2} = {{6{a^2}} \over 9} + 4{a^2} = {{42{a^2}} \over 9}\).

Do đó, \(SB = {{a\sqrt {42} } \over 3}\)

Ta suy ra \(r = {{SB} \over 2} = {{a\sqrt {42} } \over 6}\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu
  • Bài 2.30 trang 63 SBT hình học 12

    Giải bài 2.30 trang 63 sách bài tập hình học 12. Cho đường tròn tâm O bán kính r’. Xét hình chóp S.ABCD có SA vuông góc với mặt phẳng đáy, S và A cố định, SA = h cho trước và có đáy ABCD là một tứ giác tùy ý nội tiếp đường tròn đã cho, trong đó các đường chéo AC và BD vuông góc với nhau.

  • Bài 2.31 trang 63 SBT hình học 12

    Giải bài 2.31 trang 63 sách bài tập hình học 12. Cho hình lập phương ABCD.A’B’C’D’ cạnh a...

  • Bài 2.32 trang 63 SBT hình học 12

    Giải bài 2.32 trang 63 sách bài tập hình học 12. Hình trụ tròn xoay có bán kính đáy bằng r, có chiều cao bằng 2r và có trục là OO’.

  • Bài 2.28 trang 62 SBT hình học 12

    Giải bài 2.28 trang 62 sách bài tập hình học 12. Mặt phẳng (Q) song song với mặt phẳng (P) cắt ∆ và ∆' lần lượt tại M và M’. Gọi M1 là hình chiếu vuông góc của M lên mặt phẳng (P).

  • Bài 2.27 trang 62 SBT hình học 12

    Giải bài 2.27 trang 62 sách bài tập hình học 12. Trong mặt phẳng a, cho tam giác ABC vuông tại A có cạnh AC = a và có cạnh huyền BC = 2a. Cũng trong mặt phẳng đó cho nửa đường tròn đường kính AB cắt cạnh BC tại M.

  • Bài 2.26 trang 62 SBT hình học 12

    Giải bài 2.26 trang 62 sách bài tập hình học 12. Cho hình chóp S.ABC và biết rằng có một mặt cầu tiếp xúc với tất cả các cạnh bên của hình chóp đồng thời tiếp xúc với ba cạnh của đáy tại trung điểm của mỗi cạnh đáy. Chứng minh hình chóp đó là hình chóp đều.

  • Bài 2.25 trang 62 SBT hình học 12

    Giải bài 2.25 trang 62 sách bài tập hình học 12. Cho lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng a và có đường cao h...

  • Bài 2.24 trang 62 SBT hình học 12

    Giải bài 2.24 trang 62 sách bài tập hình học 12. Cho tứ diện ABCD có và. Khi quay tất cả các cạnh của tứ diện đó quanh cạnh AB có những hình nón nào được tạo thành? Hãy kể tên các hình nón đó.

  • Câu hỏi và bài tập chương 2 SGK hình học 12

    Trả lời câu hỏi và bài tập chương 2 sách giáo khoa hình học 12 mặt nón mặt trụ mặt cầu. Thế nào là một mặt tròn xoay,...

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.


Hỏi bài