Bài 2 trang 47 Vở bài tập toán 8 tập 1


Giải bài 2 trang 47 VBT toán 8 tập 1. Ba phân thức sau có bằng nhau không? (x^2- 2x - 3)/(x^2 + x) ...

Đề bài

Ba phân thức sau có bằng nhau không?

\( \dfrac{x^{2}- 2x - 3}{x^{2} + x}\); \( \dfrac{x - 3}{x}\) ; \( \dfrac{x^{2}- 4x + 3}{x^{2}- x}\).

Phương pháp giải - Xem chi tiết

Áp dụng định nghĩa hai phân thức bằng nhau: \( \dfrac{A}{B} =  \dfrac{C}{D}\) nếu \(AD = BC\), ta lần lượt xét từng đôi một.

Lời giải chi tiết

Ta chỉ cần xét xem hai đẳng thức: \( \dfrac{x^{2}- 2x - 3}{x^{2} + x} =  \dfrac{x - 3}{x}\) và \( \dfrac{x - 3}{x} =  \dfrac{x^{2}- 4x + 3}{x^{2}- x}\) có đúng hay không.

+) Xét đẳng thức thứ nhất. Tương tự như cách giải bài tập \(1\), ta có:

\(\left( {{x^2}-2x-3} \right)x = {x^3}-2{x^2}-3x \)

\(\left( {{\rm{ }}{x^2} + {\rm{ }}x} \right)\left( {x{\rm{ }}-{\rm{ }}3} \right) \)\(= {x^3}-{\rm{ }}3{x^2} + {\rm{ }}{x^2}-{\rm{ }}3x{\rm{ }}\)\( = {\rm{ }}{x^3}-{\rm{ }}2{x^2}-{\rm{ }}3x\)

Suy ra: \(\left( {{x^2}-2x-3} \right)x =\left( {{\rm{ }}{x^2} + {\rm{ }}x} \right)\left( {x{\rm{ }}-{\rm{ }}3} \right) \)

Vậy \( \dfrac{x^{2}- 2x - 3}{x^{2} + x} =  \dfrac{x - 3}{x}\)

Xét đẳng thức thứ hai. Ta có: 

\(\left( {x{\rm{ }} - {\rm{ }}3} \right)({x^2}-{\rm{ }}x){\rm{ }} \)\(= {\rm{ }}{x^3}-{\rm{ }}{x^2} - {\rm{ }}3{x^2} + {\rm{ }}3x{\rm{ }} \)\(= {\rm{ }}{x^3}-{\rm{ }}4{x^2} + {\rm{ }}3x\)

\(x({x^2}{\rm{ }} - {\rm{ }}4x{\rm{ }} + {\rm{ }}3){\rm{ }} \)\(= {x^3}-{\rm{ }}4{x^2} + {\rm{ }}3x\)

Suy ra: \(\left( {x{\rm{ }} - {\rm{ }}3} \right)({x^2}-{\rm{ }}x){\rm{ }} \)\(= x({x^2}{\rm{ }} - {\rm{ }}4x{\rm{ }} + {\rm{ }}3)\)

Vậy \( \dfrac{x - 3}{x} =  \dfrac{x^{2}- 4x + 3}{x^{2}- x}\)

Kết luận: \( \dfrac{x^{2}- 2x - 3}{x^{2} + x} \)\(=  \dfrac{x - 3}{x} =  \dfrac{x^{2}- 4x + 3}{x^{2}- x}\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.1 trên 8 phiếu

Các bài liên quan: - Bài 1. Phân thức đại số

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài