Bài 16 trang 61 Vở bài tập toán 8 tập 1


Giải bài 16 trang 61 VBT toán 8 tập 1. Quy đồng mẫu thức các phân thức sau: b) x^2 + 1; x^4/(x^2-1)...

Lựa chọn câu để xem lời giải nhanh hơn

Quy đồng mẫu thức các phân thức sau:

LG b

\({x^2} + 1,\dfrac{{{x^4}}}{{{x^2} - 1}}\) 

Phương pháp giải:

Áp dụng quy tắc quy đồng mẫu thức:

Muốn quy đồng mẫu thức nhiều phân thức ta có thể làm như sau:

- Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung.

- Tìm nhân tử phụ của mỗi mẫu thức.

- Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.

Giải chi tiết:

Coi \({x^2} + 1 = \dfrac{{{x^2} + 1}}{1}\) ta có mẫu thức chung cần tìm là \({x^2} - 1\)

\({x^2} + 1 = \dfrac{{\left( {{x^2} + 1} \right)\left( {{x^2} - 1} \right)}}{{{x^2} - 1}} = \dfrac{{{x^4} - 1}}{{{x^2} - 1}}\) 

LG c

 \(\dfrac{{{x^3}}}{{{x^3} - 3{x^2}y + 3x{y^2} - {y^3}}},\dfrac{x}{{{y^2} - xy}}\) 

Phương pháp giải:

Áp dụng quy tắc quy đồng mẫu thức:

Muốn quy đồng mẫu thức nhiều phân thức ta có thể làm như sau:

- Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung.

- Tìm nhân tử phụ của mỗi mẫu thức.

- Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.

Giải chi tiết:

 (Hướng dẫn: Khi phân tích các mẫu thức thành nhân tử nếu chúng có nhân tử trái dấu thì có thể đổi dấu ở một phân thức để các nhân tử trái dấu trở thành nhân tử chung).

+) Tìm MTC.

\({x^3} - 3{x^2}y + 3x{y^2} - {y^3} = {\left( {x - y} \right)^3}\)

\({y^2} - xy = y\left( {y - x} \right) =  - y\left( {x - y} \right)\)

Do đó có thể viết \(\dfrac{x}{{{y^2} - xy}} = \dfrac{{ - x}}{{xy - {y^2}}} = \dfrac{{ - x}}{{y\left( {x - y} \right)}}\)

 MTC \(= y{\left( {x - y} \right)^3}\) 

+) Quy đồng mẫu thức:

\(\dfrac{{{x^3}}}{{{x^3} - 3{x^2}y + 3x{y^2} - {y^3}}} = \dfrac{{{x^3}}}{{{{\left( {x - y} \right)}^3}}} \)\(\,= \dfrac{{{x^3}y}}{{y{{\left( {x - y} \right)}^3}}}\)

\(\dfrac{x}{{{y^2} - xy}} = \dfrac{{ - x}}{{y\left( {x - y} \right)}} = \dfrac{{ - x{{\left( {x - y} \right)}^2}}}{{y{{(x - y)}^3}}}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến lớp 8 trên Tuyensinh247.com mọi lúc, mọi nơi đầy đủ các môn: Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các thầy cô giáo dạy giỏi, nổi tiếng.


Gửi bài