Câu 5.34 trang 184 sách bài tập Đại số và Giải tích 11 Nâng cao


Chứng minh rằng mỗi hàm số sau đây thỏa m,ãn hệ thức tương ứng đã chỉ ra

Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh rằng mỗi hàm số sau đây thỏa m,ãn hệ thức tương ứng đã chỉ ra

LG a

\(y = {\left( {x + \sqrt {{x^2} + 1} } \right)^3};\left( {1 + {x^2}} \right)y'' + xy' - 9y = 0\)

Lời giải chi tiết:

\(\eqalign{
& y' = 3{\left( {x + \sqrt {{x^2} + 1} } \right)^2}.\left[ {1 + {x \over {\sqrt {{x^2} + 1} }}} \right] \cr 
& y'' = 6\left( {x + \sqrt {{x^2} + 1} } \right).\left[ {1 + {x \over {\sqrt {{x^2} + 1} }}} \right] \cr&+ 6\left( {x + \sqrt {{x^2} + 1} } \right).\left[ {1 + {x \over {\sqrt {{x^2} + 1} }}} \right].{x \over {\sqrt {{x^2} + 1} }} \cr&+ 3{\left( {x + \sqrt {{x^2} + 1} } \right)^2}.{1 \over {\left( {{x^2} + 1} \right).\sqrt {{x^2} + 1} }} \cr} \)

Do đó: \(\left( {1 + {x^2}} \right)y'' + xy' - 9y = 0\)

LG b

\(y = 2\sin 2x;{y^{\left( {2n} \right)}} = {\left( { - 1} \right)^n}{2^{2n}}y\)

Lời giải chi tiết:

Ta có

\(\eqalign{& y' = 2\cos 2x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,y'' =  - {2^2}\sin 2x  \cr& y''' =  - {2^3}\cos 2x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{y^{\left( 4 \right)}} = {2^4}\sin 2x  \cr& {y^{\left( 5 \right)}} = {2^5}\cos 2x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{y^{\left( 6 \right)}} =  - {2^6}\sin 2x  \cr& {y^{\left( 7 \right)}} =  - {2^7}\sin 2x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{y^{\left( 8 \right)}} = {2^8}\sin 2x  \cr& ... \cr} \)

Bằng phương pháp quy nạp, dễ dàng chứng minh được

                        \({y^{\left( {2n} \right)}} = {\left( { - 1} \right)^n}{2^{2n}}\sin 2x = {\left( { - 1} \right)^n}{2^{2n}}y\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 5: Đạo hàm cấp cao

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài