Câu 4.98 trang 118 SBT Đại số 10 Nâng cao


Giải bài tập Câu 4.98 trang 118 SBT Đại số 10 Nâng cao

Lựa chọn câu để xem lời giải nhanh hơn

Xét dấu các biểu thức sau :

 

LG a

 \(\dfrac{{7x - 4}}{{8x + 5}} - 2\)

 

Lời giải chi tiết:

Nếu đặt \(f\left( x \right) = \dfrac{{7x - 4}}{{8x + 5}} - 2\) thì

\(\begin{array}{l}f\left( x \right) > 0 \Leftrightarrow x \in \left( { - \dfrac{{14}}{9}; - \dfrac{5}{8}} \right)\\f\left( x \right) < 0 \Leftrightarrow x \in \left( { - \infty ; - \dfrac{{14}}{9}} \right) \cup \left( { - \dfrac{5}{8}; + \infty } \right).\end{array}\)

 

LG b

 \(\dfrac{{{x^2} - 5x + 4}}{{{x^2} + 5x + 4}}\)

 

Lời giải chi tiết:

Nếu đặt \(g\left( x \right) = \dfrac{{{x^2} - 5x + 4}}{{{x^2} + 5x + 4}}\) thì

\(\begin{array}{l}g\left( x \right) < 0 \Leftrightarrow x \in \left( { - 4; - 1} \right) \cup \left( {1;4} \right)\\g\left( x \right) > 0 \Leftrightarrow x \in \left( { - \infty ; - 4} \right) \cup \left( { - 1;1} \right) \cup \left( {4; + \infty } \right).\end{array}\)

 

LG c

 \(\dfrac{{15{x^2} - 7x - 2}}{{6{x^2} - x + 5}}\)

 

Lời giải chi tiết:

Nếu đặt \(h\left( x \right) = \dfrac{{15{x^2} - 7x - 2}}{{6{x^2} - x + 5}}\) thì

\(\begin{array}{l}h\left( x \right) > 0 \Leftrightarrow x \in \left( { - \infty ; - \dfrac{1}{5}} \right) \cup \left( {\dfrac{2}{3}; + \infty } \right)\\h\left( x \right) < 0 \Leftrightarrow x \in \left( { - \dfrac{1}{5};\dfrac{2}{3}} \right).\end{array}\)

 

LG d

\(\dfrac{{{x^4} - 17{x^2} + 60}}{{x\left( {{x^2} - 8x + 5} \right)}}\)

 

Lời giải chi tiết:

Nếu đặt \(p\left( x \right) = \dfrac{{{x^4} - 17{x^2} + 60}}{{x\left( {{x^2} - 8x + 5} \right)}}\) thì \(p(x) > 0\) khi và chỉ khi

\(x \in \left( { - \sqrt {12} , - \sqrt 5 } \right) \cup \left( {0;4 - \sqrt {11} } \right)\)\( \cup \left( {\sqrt 5 ;\sqrt {12} } \right)\)\( \cup \left( {4 + \sqrt {11} ; + \infty } \right).\)

\(p(x) < 0\) khi và chỉ khi

\(x \in \left( { - \infty ; - \sqrt {12} } \right) \cup \left( { - \sqrt 5 ;0} \right)\)\( \cup \left( {4 - \sqrt {11} ;\sqrt 5 } \right) \cup \left( {\sqrt {12} ;4 + \sqrt {11} } \right).\) 

Loigiaihay.com

 

Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.