Câu 4.85 trang 116 SBT Đại số 10 Nâng cao


Giải bài tập Câu 4.85 trang 116 SBT Đại số 10 Nâng cao

Lựa chọn câu để xem lời giải nhanh hơn

Cho các số không âm a, b, c. Chứng minh rằng :

 

LG a

\(\dfrac{{{a^6} + {b^9}}}{4} \ge 3{a^2}{b^3} - 16\)

 

Lời giải chi tiết:

Bất đẳng thức cần chứng minh được biến đổi thành :

\({a^6} + {b^9} + 64 \ge 12{a^2}{b^3}.\)

Áp dụng bất đẳng thức giữa trung bình cộng và trung bình nhân, ta có :

\({a^6} + {b^9} + 64 \ge 3\sqrt[3]{{{a^6}{b^9}.64}} = 12{a^2}{b^3}.\)

Vậy

\({a^6} + {b^9} + 64 \ge 12{a^2}{b^3}\) hay \(\dfrac{{{a^6} + {b^9}}}{4} \ge 3{a^2}{b^3} - 16.\)

Đẳng thức xảy ra khi và chỉ khi a = 2, \(b = \sqrt[3]{4}.\)

 

LG b

 \(a + b + 2{a^2} + 2{b^2} \ge 2ab + 2b\sqrt a  + 2a\sqrt b .\)

 

Lời giải chi tiết:

Bất đẳng thức cần chứng minh được biến đổi thành :

\({\left( {a - b} \right)^2} + {\left( {b - \sqrt a } \right)^2} + {\left( {a - \sqrt b } \right)^2} \ge 0.\)

Dấu bằng xảy ra khi và chỉ khi \(a = b = 0\) hoặc \(a = b = 1\).

Điều này luôn luôn đúng.

Loigiaihay.com

 

Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí