Câu 4.87 trang 117 SBT Đại số 10 Nâng cao


Giải bài tập Câu 4.87 trang 117 SBT Đại số 10 Nâng cao

Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh rằng nếu các số a, b, c đều dương thì :

 

LG a

\(\left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2}} \right) \ge 9abc\)

 

Lời giải chi tiết:

 Do \(a, b, c > 0\) nên \(a + b + c \ge 3\sqrt[3]{{abc}}\) và \({a^2} + {b^2} + {c^2} \ge 3\sqrt[3]{{{a^2}{b^2}{c^2}}}.\)

Suy ra \(\left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2}} \right) \ge 9\sqrt[3]{{{a^3}{b^3}{c^3}}} = 9abc.\)

Dấu bằng xảy ra khi và chỉ khi \(a = b = c.\)

 

LG b

\(\dfrac{{bc}}{a} + \dfrac{{ac}}{b} + \dfrac{{ab}}{c} \ge a + b + c\)

 

Lời giải chi tiết:

áp dụng bất đẳng thức giữa trung bình cộng và trung bình nhân, ta có

\(\dfrac{{ab}}{c} + \dfrac{{bc}}{a} \ge 2b;\) \(\dfrac{{ac}}{b} + \dfrac{{ab}}{c} \ge 2a;\) \(\dfrac{{bc}}{a} + \dfrac{{ac}}{b} \ge 2c,\) nên

\(\dfrac{{bc}}{a} + \dfrac{{ac}}{b} + \dfrac{{ab}}{c} \ge a + b + c.\)

Đẳng thức xảy ra khi a = b = c.

 

LG c

\(\dfrac{{{a^2}}}{{b + c}} + \dfrac{{{b^2}}}{{c + a}} + \dfrac{{{c^2}}}{{a + b}} \ge \dfrac{{a + b + c}}{2}\)\( \ge \dfrac{{ab}}{{a + b}} + \dfrac{{bc}}{{b + c}} + \dfrac{{ca}}{{c + a}}\)

 

Lời giải chi tiết:

\(\dfrac{{{a^2}}}{{b + c}} + \dfrac{{b + c}}{4} \ge a;\) \(\dfrac{{{b^2}}}{{a + c}} + \dfrac{{a + c}}{4} \ge b;\) \(\dfrac{{{c^2}}}{{a + b}} + \dfrac{{a + b}}{4} \ge c.\)

Do đó \(\dfrac{{{a^2}}}{{b + c}} + \dfrac{{{b^2}}}{{a + c}} + \dfrac{{{c^2}}}{{a + b}} \ge \dfrac{{a + b + c}}{2}.\)

Mặt khác từ bất đẳng thức \({\left( {x + y} \right)^2} \ge 4xy\) và \(x, y > 0\) ta suy ra :

\(\dfrac{{2ab}}{{a + b}} \le \dfrac{{a + b}}{2};\) \(\dfrac{{2bc}}{{b + c}} \le \dfrac{{b + c}}{2};\) \(\dfrac{{2ca}}{{c + a}} \le \dfrac{{c + a}}{2}.\)

Cộng từng vế các bất đẳng thức và chia hai vế cho 2 ta được

\(\dfrac{{ab}}{{a + b}} + \dfrac{{bc}}{{b + c}} + \dfrac{{ca}}{{c + a}} \le \dfrac{{a + b + c}}{2}.\)

Đẳng thức xảy ra khi \(a = b = c.\)

Loigiaihay.com

 

Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí