Câu 4.59 trang 144 sách bài tập Đại số và Giải tích 11 Nâng cao


Tìm các giới hạn sau

Lựa chọn câu để xem lời giải nhanh hơn

Tìm các giới hạn sau

 

LG a

\(\mathop {\lim }\limits_{x \to 1} {{\sqrt {x + 3}  - 2} \over {x - 1}}\)      

 

Lời giải chi tiết:

\({1 \over 4};\)     

 

LG b

\(\mathop {\lim }\limits_{x \to 7} {{2 - \sqrt {x - 3} } \over {{x^2} - 49}}\)

 

Lời giải chi tiết:

\( - {1 \over {56}};\)       

 

LG c

\(\mathop {\lim }\limits_{x \to 3} {{\sqrt {{x^2} - 2x + 6}  - \sqrt {{x^2} + 2x - 6} } \over {{x^2} - 4x + 3}}\)       

 

Phương pháp giải:

 Nhân tử và mẫu của phân thức đã cho \(\sqrt {{x^2} - 2x + 6}  + \sqrt {{x^2} + 2x - 6} \) và đơn giản phân thức nhận được, ta có

\({{\sqrt {{x^2} - 2x + 6}  - \sqrt {{x^2} + 2x - 6} } \over {{x^2} - 4x + 3}} = {4 \over {1 - x}}.{1 \over {\sqrt {{x^2} - 2x + 6}  + \sqrt {{x^2} + 2x - 6} }}\) với \(x \ne 3.\)

 

Lời giải chi tiết:

\( - {1 \over 3}.\)

 

LG d

 \(\mathop {\lim }\limits_{x \to {3^ - }} {{x - 3} \over {3 - \sqrt {6x - {x^2}} }}\)

 

Lời giải chi tiết:

\({{x - 3} \over {3 - \sqrt {6x - {x^2}} }} = {{\left( {x - 3} \right)\left( {3 + \sqrt {6x - {x^2}} } \right)} \over {9 - 6x + {x^2}}} = {{3 + \sqrt {6x - {x^2}} } \over {x - 3}}.\)

Vì \(\mathop {\lim }\limits_{x \to {3^ - }} \left( {3 + \sqrt {6x - {x^2}} } \right) = 6 > 0,\mathop {\lim }\limits_{x \to {3^ - }} \left( {x - 3} \right) = 0\)  và \(x - 3 < 0\) với mọi \(x < 3\)  nên

                                    \(\mathop {\lim }\limits_{x \to {3^ - }} {{x - 3} \over {3 - \sqrt {6x - {x^2}} }} =  - \infty .\)

 

LG e

\(\mathop {\lim }\limits_{x \to 2} {{\sqrt {x + 2}  - 2} \over {\sqrt {x + 7}  - 3}}\)     

 

Lời giải chi tiết:

 Nhân tử và mẫu của phân thức với \(\left( {\sqrt {x + 2}  + 2} \right)\left( {\sqrt {x + 7}  + 3} \right),\) ta được

            \({{\sqrt {x + 2}  - 2} \over {\sqrt {x + 7}  - 3}} = {{\left( {x - 2} \right)\left( {\sqrt {x + 7}  + 3} \right)} \over {\left( {x - 2} \right)\left( {\sqrt {x + 2}  + 2} \right)}} = {{\sqrt {x + 7}  + 3} \over {\sqrt {x + 2}  + 2}}\) với \(x \ne 2.\)

Do đó

               \(\mathop {\lim }\limits_{x \to 2} {{\sqrt {x + 2}  - 2} \over {\sqrt {x + 7}  - 3}} = \mathop {\lim }\limits_{x \to 2} {{\sqrt {x + 7}  + 3} \over {\sqrt {x + 2}  + 2}} = {3 \over 2};\)

 

LG f

\(\mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {3{x^2} + x + 1}  - x\sqrt 3 } \right).\)

 

Lời giải chi tiết:

\({{\sqrt 3 } \over 6}.\)

Loigiaihay.com

 

Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 7: Các dạng vô định

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.