Câu 38 trang 243 SBT Đại số 10 Nâng cao


Giải bài tập Câu 38 trang 243 SBT Đại số 10 Nâng cao

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Chứng minh rằng nếu \(\sin \left( {\alpha  - \beta } \right) = \dfrac{1}{3}\sin \beta ,\) thì \(\tan \left( {\alpha  - \beta } \right) = \dfrac{{\sin \alpha }}{{3 + \cos \alpha }}.\)

Lời giải chi tiết

\(\begin{array}{l}3\sin \left( {\alpha  - \beta } \right) = \sin \left( {\beta  - \alpha  + \alpha } \right)\\ = \sin \alpha \cos \left( {\alpha  - \beta } \right) - \sin \left( {\alpha  - \beta } \right)\cos \alpha \end{array}\)

từ đó ta có

\(\left( {3 + \cos \alpha } \right)\sin \left( {\alpha  - \beta } \right) = \sin \alpha \cos \left( {\alpha  - \beta } \right)\,\,\,\left( * \right)\) vậy \(\tan \left( {\alpha  - \beta } \right) = \dfrac{{\sin \alpha }}{{3 + \cos \alpha }}.\)

(Chú ý. \(\cos \left( {\alpha  - \beta } \right) \ne 0\) vì nếu \(\cos \left( {\alpha  - \beta } \right) = 0\) thì từ (*) ta suy ra \(\sin \left( {\alpha  - \beta } \right) = 0\), vô lí).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!