Câu 10 trang 239 SBT Đại số 10 Nâng cao>
Giải bài tập Câu 10 trang 239 SBT Đại số 10 Nâng cao
Giải các phương trình:
LG a
\(\dfrac{{13}}{{2{x^2} + x - 21}} + \dfrac{1}{{2x + 7}} = \dfrac{6}{{{x^2} - 9}};\)
Lời giải chi tiết:
\(x = - 4.\)
LG b
\(\dfrac{{x + 1}}{{x - 1}} + \dfrac{{x - 2}}{{x + 2}} + \dfrac{{x - 3}}{{x + 3}} + \dfrac{{x + 4}}{{x - 4}} = 4.\)
Giải:
Lời giải chi tiết:
Ta có
\(\begin{array}{l}\dfrac{{x + 1}}{{x - 1}} = 1 + \dfrac{2}{{x - 1}},\\\dfrac{{x - 2}}{{x + 2}} = 1 - \dfrac{4}{{x + 2}},\\\dfrac{{x - 3}}{{x + 3}} = 1 - \dfrac{6}{{x + 3}},\\\dfrac{{x + 4}}{{x - 4}} = 1 + \dfrac{8}{{x - 4}},\end{array}\)
nên phương trình đã cho trở thành \(\dfrac{1}{{x - 1}} - \dfrac{2}{{x + 2}} - \dfrac{3}{{x + 3}} + \dfrac{4}{{x - 4}} = 0\)
hay \(\dfrac{{5x - 8}}{{\left( {x - 1} \right)\left( {x - 4} \right)}} = \dfrac{{5x + 12}}{{\left( {x + 2} \right)\left( {x + 3} \right)}}.\)
Từ đó phương trình đã cho tương đương với hệ
\(\left\{ \begin{array}{l}\left( {5x - 8} \right)\left( {x + 2} \right)\left( {x + 3} \right) = \left( {5x + 12} \right)\left( {x - 1} \right)\left( {x - 4} \right)\\\left( {x - 1} \right)\left( {x + 2} \right)\left( {x + 3} \right)\left( {x - 4} \right) \ne 0\end{array} \right.\,\,\,\,\left( * \right)\)
Phương trình thứ nhất của hệ (*) được biến đổi thành phương trình
\({x^2} + x - \dfrac{{16}}{5} = 0\) và có hai nghiệm \({x_1} = \dfrac{1}{2}\left( { - 1 + \sqrt {\dfrac{{69}}{5}} } \right)\) và \({x_2} = \dfrac{1}{2}\left( { - 1 - \sqrt {\dfrac{{69}}{5}} } \right).\)
Vì hai nghiệm này thỏa mãn điều kiện thứ hai của hệ (*) nên chúng là nghiệm của hai phương trình đã cho.
Loigiaihay.com
- Câu 11 trang 239 SBT Đại số 10 Nâng cao
- Câu 12 trang 240 SBT Đại số 10 Nâng cao
- Câu 13 trang 240 SBT Đại số 10 Nâng cao
- Câu 14 trang 240 SBT Đại số 10 Nâng cao
- Câu 15 trang 240 SBT Đại số 10 Nâng cao
>> Xem thêm