Bài 7 trang 221 SGK Đại số 10 Nâng cao

Bình chọn:
3.5 trên 2 phiếu

Không giải phương trình, tính gần đúng tổng các bình phương hai nghiệm của phương trình (chính xác đến hàng phần trăm)

Cho phương trình: \({x^2} + 2(\sqrt 3  + 1)x + 2\sqrt 3  = 0\)

a) Không giải phương trình, tính gần đúng tổng các bình phương hai nghiệm của phương trình (chính xác đến hàng phần trăm)

b) Tính nghiệm gần đúng của phương trình (chính xác đến hàng phần trăm).

Đáp án

a) Theo định lý Vi-ét, ta có:

\(\eqalign{
& \left\{ \matrix{
{x_1} + {x_2} = - 2(\sqrt 3 + 1) \hfill \cr
{x_1}{x_2} = 2\sqrt 3 \,\,\,(\Delta ' > 0) \hfill \cr} \right. \cr
& \Rightarrow x_1^2 + x_2^2 = {({x_1} + {x_2})^2} - 2{x_1}{x_2} \cr&= 4{(\sqrt 3 + 1)^2} - 4\sqrt 3 = 4(4 + \sqrt 3 ) \approx 22,93 \cr} \) 

b) \(x_1≈ -0, 73;x_2≈ -4, 73\)

>>Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan