Bài 14 trang 222 SGK Đại số 10 Nâng cao


Tìm giá trị nhỏ nhất của các hàm số sau

Lựa chọn câu để xem lời giải nhanh hơn

Tìm giá trị nhỏ nhất của các hàm số sau

LG a

\(f(x) = x + {2 \over {x + 2}}\) trên khoảng \((-2; +∞)\)

Phương pháp giải:

Áp dụng BĐT Cô si \[a + b \ge 2\sqrt {ab} \]

Lời giải chi tiết:

Trên khoảng \((-2;+\infty)\) ta có x+2>0.

Áp dụng bất đẳg thức Cô-si, ta có:

\(f(x) = x + 2+{2 \over {x + 2}} - 2 \) \(\ge 2\sqrt {(x + 2){2 \over {x + 2}}}  - 2 \)

\(= 2\sqrt 2  - 2\) 

Dấu “=”xảy ra khi và chỉ khi:

\(x + 2 = {2 \over {x + 2}} \Leftrightarrow {(x + 2)^2} = 2\) \( \Leftrightarrow \left\{ \matrix{
x = \sqrt 2 - 2 \hfill \cr 
x = - \sqrt 2 - 2 \hfill \cr} \right.\)

LG b

 \(g(x) = 3{x^2} + {1 \over x}\) trên khoảng \((0; +∞)\)

Phương pháp giải:

Áp dụng BĐT Cô si \[a + b + c \ge 3\sqrt[3]{{abc}}\]

Lời giải chi tiết:

Trên khoảng \((0; +∞)\) thì x>0

Áp dụng bất đẳng thức Cô-si cho ba số, ta có:

\(g(x) = 3{x^2} + {1 \over {2x}} + {1 \over {2x}} \) \(\ge 3\root 3 \of {3{x^2}.{1 \over {2x}}.{1 \over {2x}}}  = 3\root 3 \of {{3 \over 4}} \)

Dấu “=” xảy ra \( \Leftrightarrow 3{x^2} = {1 \over {2x}} \)\( \Leftrightarrow 6{x^3} = 1\) \(\Leftrightarrow x = \root 3 \of {{1 \over 6}} \)

Vậy: \(\min \,g(x) = 3\root 3 \of {{3 \over 4}}  \Leftrightarrow x = \root 3 \of {{1 \over 6}} \)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.8 trên 6 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài