Bài 6 trang 81 SKG Hình học 12 Nâng cao


Cho hai điểm. Tìm toạ độ điểm M chia đoạn thẳng AB theo tỉ số k

Đề bài

Cho hai điểm \(A\left( {{x_1};{y_1};{z_1}} \right)\) và \(B\left( {{x_2};{y_2};{z_2}} \right)\). Tìm toạ độ điểm M chia đoạn thẳng AB theo tỉ số k (tức là \(\overrightarrow {MA}  = k\overrightarrow {MB} \)), trong đó \(k \ne 1\).

Phương pháp giải - Xem chi tiết

Sử dụng công thức \(k\overrightarrow u  = \left( {ka;kb;kc} \right)\) và 

\(\overrightarrow u = \overrightarrow v \Leftrightarrow \left\{ \begin{array}{l}
a = a'\\
b = b'\\
c = c'
\end{array} \right.\)

Lời giải chi tiết

Giả sử \(M\left( {x;y;z} \right)\) thỏa mãn \(\overrightarrow {MA}  = k\overrightarrow {MB} \) với \(k \ne 1\).
Ta có \(\overrightarrow {MA}  = \left( {{x_1} - x;{y_1} - y;{z_1} - z} \right),\) \(\overrightarrow {MB}  = \left( {{x_2} - x;{y_2} - y;{z_2} - z} \right)\)

\(\overrightarrow {MA} = k\overrightarrow {MB}\) \( \Leftrightarrow \left\{ \matrix{
{x_1} - x = k\left( {{x_2} - x} \right) \hfill \cr 
{y_1} - y = k\left( {{y_2} - y} \right) \hfill \cr 
{z_1} - z = k\left( {{z_2} - z} \right) \hfill \cr} \right.\) \( \Leftrightarrow \left\{ \matrix{
x = {{{x_1} - k{x_2}} \over {1 - k}} \hfill \cr 
y = {{{y_1} - k{y_2}} \over {1 - k}} \hfill \cr 
z = {{{z_1} - k{z_2}} \over {1 - k}} \hfill \cr} \right.\)

Loigiaihay.com


Bình chọn:
3.3 trên 4 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài