Bài 12 trang 82 SGK Hình học 12 Nâng cao


Cho hình chóp S.ABC có đường cao SA = h, đáy là tam giác ABC vuông tại C, AC = b, BC = a. Gọi M là trung điểm của AC và N là điểm sao cho . a) Tính độ dài đoạn thẳng MN. b) Tìm sự liên hệ giữa a, b, h để MN vuông góc với SB.

Lựa chọn câu để xem lời giải nhanh hơn

Cho hình chóp S.ABC có đường cao SA = h, đáy là tam giác ABC vuông tại C, AC = b, BC = a. Gọi M là trung điểm của AC và N  là điểm sao cho \(\overrightarrow {SN}  = {1 \over 3}\overrightarrow {SB} \).

LG a

Tính độ dài đoạn thẳng MN.

Phương pháp giải:

Chọn hệ trục Oxyz sao cho A trùng O, tia AC trùng tia Ox, AS trùng Oz.

Tìm tọa độ các điểm và tính toán.

Lời giải chi tiết:

Chọn hệ trục Oxyz như hình vẽ, B nằm trong góc xOy.
Ta có: \(A = \left( {0;0;0} \right),C = \left( {b;0;0} \right),\) \(B = \left( {b;a;0} \right),S = \left( {0;0;h} \right)\) .

\(M\left( {{b \over 2};0;0} \right),\overrightarrow {SB}  = \left( {b;a; - h} \right)\)

Gọi \(N\left( {x;y;z} \right)\) thì \(\overrightarrow {SN}  = \left( {x;y;z - h} \right)\).

\(\overrightarrow {SN} = {1 \over 3}\overrightarrow {SB} \Leftrightarrow \left\{ \matrix{
x = {b \over 3} \hfill \cr 
y = {a \over 3} \hfill \cr 
z - h = {{ - h} \over 3} \hfill \cr} \right. \) \(\Leftrightarrow \left\{ \matrix{
x = {b \over 3} \hfill \cr 
y = {a \over 3} \hfill \cr 
z = {{2h} \over 3} \hfill \cr} \right. \) \(\Rightarrow N\left( {{b \over 3};{a \over 3};{{2h} \over 3}} \right)\)

\(\eqalign{
& \overrightarrow {MN} = \left( {{b \over 3} - {b \over 2};{a \over 3};{{2h} \over 3}} \right) \cr &= \left( { - {b \over 6};{a \over 3};{{2h} \over 3}} \right) \cr 
& MN = \sqrt {{{{b^2}} \over {36}} + {{{a^2}} \over 9} + {{4{h^2}} \over 9}} \cr &= {1 \over 6}\sqrt {{b^2} + 4{a^2} + 16{h^2}} \cr} \)

LG b

Tìm sự liên hệ giữa a, b, h để MN vuông góc với SB.

Phương pháp giải:

\(MN \bot SB \Leftrightarrow \overrightarrow {MN} .\overrightarrow {SB}  = 0\)

Lời giải chi tiết:

\(MN \bot SB \Leftrightarrow \overrightarrow {MN} .\overrightarrow {SB}  = 0\) \(\Leftrightarrow  - {{{b^2}} \over 6} + {{{a^2}} \over 3} + {{ - 2{h^2}} \over 3} = 0 \) \(\Leftrightarrow 4{h^2} = 2{a^2} - {b^2}\)

Loigiaihay.com


Bình chọn:
3.3 trên 4 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài