

Bài 10 trang 81 SGK Hình học 12 Nâng cao
Cho ba điểm a) Chứng minh A, B, C không thẳng hàng. b) Tính chu vi và diện tích tam giác ABC. c) Tính độ dài đường cao của tam giác ABC kẻ từ đỉnh A. d) Tính các góc của tam giác ABC.
Cho ba điểm A(1;0;0);B(0;0;1);C(2;1;1)
LG a
Chứng minh A, B, C không thẳng hàng.
Phương pháp giải:
Kiểm tra →BA,→BC không cùng phương.
Lời giải chi tiết:
Ta có →BA=(1;0;−1),→BC=(2;1;0).
Vì 12≠01⇒→BA,→BC không cùng phương do đó A, B, C không thẳng hàng.
LG b
Tính chu vi và diện tích tam giác ABC.
Phương pháp giải:
- Tính độ dài các đoạn thẳng AB, BC, CA suy ra chu vi.
- Chứng minh tam giác ABC vuông suy ra diện tích.
Lời giải chi tiết:
Ta có
AB=√12+02+(−1)2=√2BC=√22+12+02=√5AC=√12+12+12=√3
Vậy chu vi tam giác ABC bằng √2+√3+√5.
Ta có BC2=AB2+AC2⇒ΔABC vuông tại A nên có diện tích S=12AB.AC=√62
Chú ý:
Có thể tính diện tích theo công thức như sau:
LG c
Tính độ dài đường cao của tam giác ABC kẻ từ đỉnh A.
Phương pháp giải:
Tính chiều cao theo công thức ha=2Sa
Lời giải chi tiết:
Gọi ha là độ dài đường cao kẻ từ A ta có:
SABC=12BC.ha ⇒ha=2SABCBC=√6√5=√305
LG d
Tính các góc của tam giác ABC.
Lời giải chi tiết:
Vì tam giác ABC vuông tại A nên:
cosB=ABBC=√2√5=√105
cosC=ACBC=√3√5=√155
Chú ý:
Có thể tính cosB, cosC theo công thức:
Loigiaihay.com


- Bài 11 trang 81 SGK Hình học 12 Nâng cao
- Bài 12 trang 82 SGK Hình học 12 Nâng cao
- Bài 13 trang 82 SGK Hình học 12 Nâng cao
- Bài 14 trang 82 SGK Hình học 12 Nâng cao
- Bài 9 trang 81 SGK Hình học 12 Nâng cao
>> Xem thêm