Bài 3 trang 81 SGK Hình học 12 Nâng cao


Tìm góc giữa hai vectơ trong mỗi trường hợp sau:

Lựa chọn câu để xem lời giải nhanh hơn

Tìm góc giữa hai vectơ \(\overrightarrow u \) và \(\overrightarrow v \) trong mỗi trường hợp sau:

LG a

\(\overrightarrow u  = \left( {1\,;\,1\,;\,1} \right),\overrightarrow v  = \left( {2\,;\,1\,;\, - 1} \right)\).

Phương pháp giải:

Sử dụng công thức tính cô sin góc giữa hai véc tơ \(\cos \left( {\overrightarrow u ,\overrightarrow v } \right) = \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|}}\)

Lời giải chi tiết:

\(\cos \left( {\overrightarrow u ,\overrightarrow v } \right) = {{\overrightarrow u .\overrightarrow v } \over {\left| {\overrightarrow u } \right|\left| {\overrightarrow i } \right|}}\) \( = \frac{{1.2 + 1.1 + 1.\left( { - 1} \right)}}{{\sqrt {1 + 1 + 1} .\sqrt {4 + 1 + 1} }}\) \( = {2 \over {\sqrt 3 .\sqrt 6 }} = {{\sqrt 2 } \over 3}\)

LG b

\(\overrightarrow u  = 3\overrightarrow i  + 4\overrightarrow j \,\,;\,\,\overrightarrow v  =  - 2\overrightarrow j  + 3\overrightarrow k \).

Lời giải chi tiết:

Ta có: \(\overrightarrow u  = \left( {3;4;0} \right)\,;\,\overrightarrow v  = \left( {0; - 2;3} \right) \)

\(\Rightarrow \cos \left( {\overrightarrow u ,\overrightarrow v } \right) = {{\overrightarrow u .\overrightarrow v } \over {\left| {\overrightarrow u } \right|\left| {\overrightarrow v } \right|}}\) \( = \frac{{3.0 + 4.\left( { - 2} \right) + 0.\left( { - 3} \right)}}{{\sqrt {9 + 16 + 0} .\sqrt {0 + 4 + 9} }} \) \(= \frac{{ - 8}}{{5\sqrt {13} }}\) \( = {{ - 8\sqrt {13} } \over {65}}\)

Loigiaihay.com


Bình chọn:
3.4 trên 5 phiếu

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.


Hỏi bài