Bài 4 trang 81 SGK Hình học 12 Nâng cao


Biết góc giữa vectơ . Tìm k để vectơ vuông góc với vectơ

Đề bài

Biết \(\left| {\overrightarrow u } \right| = 2\,;\,\left| {\overrightarrow v } \right| = 5\), góc giữa vectơ \(\overrightarrow u \) và \(\overrightarrow v \) bằng \({{2\pi } \over 3}\). Tìm k để vectơ \(\overrightarrow p  = k\overrightarrow u  + 17\overrightarrow v \) vuông góc với vectơ \(\overrightarrow q  = 3\overrightarrow u  - \overrightarrow v \).

Phương pháp giải - Xem chi tiết

Sử dụng \(\overrightarrow p  \bot \overrightarrow p  \Leftrightarrow \overrightarrow p .\overrightarrow q  = 0\) và \(\overrightarrow u .\overrightarrow v  = \left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|.\cos \left( {\overrightarrow u ,\overrightarrow v } \right)\)

Lời giải chi tiết

Ta có 

\(\eqalign{
& \cos \left( {\overrightarrow u ,\overrightarrow v } \right) = \cos {{2\pi } \over 3} = - {1 \over 2}\cr &\Rightarrow \overrightarrow u .\overrightarrow v  = \left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|.\cos \left( {\overrightarrow u ,\overrightarrow v } \right) \cr &= 2.5.\left( { - \frac{1}{2}} \right) =  - 5\cr &\overrightarrow p \bot \overrightarrow q  \Leftrightarrow \overrightarrow p .\overrightarrow q = 0\cr & \Leftrightarrow \left( {k\overrightarrow u + 17\overrightarrow v } \right)\left( {3\overrightarrow u - \overrightarrow v } \right) = 0 \cr 
& \Leftrightarrow 3k{\left| {\overrightarrow u } \right|^2} - 17{\left| {\overrightarrow v } \right|^2} + \left( {51 - k} \right)\overrightarrow u .\overrightarrow v = 0 \cr 
& \Leftrightarrow 3k.4 - 17.25 + \left( {51 - k} \right).(-5) = 0 \cr 
& \Leftrightarrow 17k - 680 = 0 \cr 
& \Leftrightarrow k = 40 \cr} \)

Vậy với k = 40 thì \(\overrightarrow p  \bot \overrightarrow q \)

Loigiaihay.com


Bình chọn:
3.3 trên 3 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài