Bài 11 trang 81 SGK Hình học 12 Nâng cao


Cho bốn điểm A(1 ; 0 ; 0), B(0 ; 1 ; 0), C(0 ; 0 ; 1) và D(-2 ; 1 ; -2). a) Chứng minh rằng A, B, C, D là bốn đỉnh của một hình tứ diện. b) Tính góc giữa các đường thẳng chứa các cạnh đối của tứ diện đó. c) Tính thể tích tứ diện ABCD và độ dài đường cao của tứ diện kẻ từ đỉnh A.

Lựa chọn câu để xem lời giải nhanh hơn

Cho bốn điểm A(1 ; 0 ; 0), B(0 ; 1 ; 0), C(0 ; 0 ; 1) và D(-2 ; 1 ; -2).

LG a

Chứng minh rằng A, B, C, D là bốn đỉnh của một hình tứ diện.

Phương pháp giải:

Chứng minh \(\overrightarrow {AB} ,\overrightarrow {AC} ,\overrightarrow {AD} \) không đồng phẳng hay \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} \ne 0\)

Lời giải chi tiết:

Ta có: 

\(\eqalign{
& \overrightarrow {AB} = \left( { - 1;1;0} \right),\overrightarrow {AC} = \left( { - 1;0;1} \right),\cr &\overrightarrow {AD} = \left( { - 3;1; - 2} \right) \cr 
& \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] \cr &= \left( {\left| \matrix{
1\,\,\,\,\,\,0 \hfill \cr 
0\,\,\,\,\,1 \hfill \cr} \right|;\left| \matrix{
0\,\,\,\, - 1 \hfill \cr 
1\,\,\,\,\, - 1 \hfill \cr} \right|;\left| \matrix{
- 1\,\,\,\,\,\,1 \hfill \cr 
- 1\,\,\,\,\,\,\,0 \hfill \cr} \right|} \right) \cr &= \left( { 1;1; 1} \right) \cr 
& \Rightarrow \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} \cr &= 1 .(-3)+ 1.1 +1.(-2) = - 4 \ne 0 \cr} \)

Do đó ba vectơ \(\overrightarrow {AB} ,\overrightarrow {AC} ,\overrightarrow {AD} \) không đồng phẳng. Vậy A, B, C, D là 4 đỉnh của một tứ diện.

LG b

Tính góc giữa các đường thẳng chứa các cạnh đối của tứ diện đó.

Phương pháp giải:

Sử dụng công thức tính cô sin góc giữa hai véc tơ \(\cos \left( {\overrightarrow u ,\overrightarrow v } \right) = \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|}}\)

Lời giải chi tiết:

Ta có \(\overrightarrow {CD}  = \left( { - 2;1; - 3} \right),\overrightarrow {BD}  = \left( { - 2;0; - 2} \right),\) \(\overrightarrow {BC}  = \left( {0; - 1;1} \right)\).

Gọi \(\alpha ,\beta ,\gamma \) lần lượt là góc tạo bởi các cặp đường thẳng AB và CD, AC và BD, AD và BC thì

\(\eqalign{
& \cos \alpha = \left| {\cos \left( {\overrightarrow {AB} ,\overrightarrow {CD} } \right)} \right| \cr &= {{\left| {2 + 1 + 0} \right|} \over {\sqrt 2 .\sqrt {14} }} = {{3\sqrt 7 } \over {14}} \cr 
& \cos \beta = \left| {\cos \left( {\overrightarrow {AC} ,\overrightarrow {BD} } \right)} \right|\cr & = {{\left| {2 + 0 - 2} \right|} \over {\sqrt 2 .\sqrt 8 }} = 0 \Rightarrow AC \bot BD \cr 
& \cos \gamma = \left| {\cos \left( {\overrightarrow {AD} ,\overrightarrow {BC} } \right)} \right| \cr & = {{\left| {0 - 1 - 2} \right|} \over {\sqrt 2 .\sqrt {14} }} = {{3\sqrt 7 } \over {14}} \cr} \)

LG c

Tính thể tích tứ diện ABCD và độ dài đường cao của tứ diện kẻ từ đỉnh A.

Phương pháp giải:

Tính thể tích theo công thức \(V = {1 \over 6}\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} } \right|\)

Lời giải chi tiết:

Thể tích tứ diện ABCD là: \(V = {1 \over 6}\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} } \right| \) \(= {1 \over 6}\left| { - 4} \right| = {2 \over 3}\)

Gọi \({h_A}\) là đường cao của tứ diện kẻ từ đỉnh A.
Ta có:

\(\eqalign{
& V = {1 \over 3}{h_A}.{S_{BCD}} \Rightarrow {h_A} = {{3V} \over {{S_{BCD}}}} \cr 
& {S_{BCD}} = {1 \over 2}\left| {\left[ {\overrightarrow {BC} ,\overrightarrow {BD} } \right]} \right| = \sqrt 3 \cr} \)

Vậy \({h_A} = {{3.{2 \over 3}} \over {\sqrt 3 }} = {{2\sqrt 3 } \over 3}\)

Loigiaihay.com


Bình chọn:
3.8 trên 4 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài