Bài 16 trang 222 SGK Đại số 10 Nâng cao>
Giải các hệ bất phương trình
Giải các hệ bất phương trình
LG a
\(\left\{ \matrix{
{x^2} - 4 > 0 \hfill \cr
{1 \over {x + 1}} + {1 \over {x + 2}} \ge {1 \over x} \hfill \cr} \right.\)
Lời giải chi tiết:
Ta giải từng bất phương trình trong hệ đã cho:
\({x^2} - 4 > 0 \Leftrightarrow \left[ \matrix{
x < - 2 \hfill \cr
x > 2 \hfill \cr} \right.\)
Tập nghiệm là S1= \( (-∞; -2) ∪ (2, +∞)\)
\(\eqalign{
& {1 \over {x + 1}} + {1 \over {x + 2}} \ge {1 \over x}\cr& \Leftrightarrow {{x(x + 2) + x(x + 1) - (x + 1)(x - 2)} \over {x(x + 1)(x + 2)}} \ge 0 \cr
& \Leftrightarrow {{{x^2} - 2} \over {x(x + 1)(x + 2)}} \ge 0 \cr} \)
Lập bảng xét dấu:
Vậy \({S_2} = ( - 2; - \sqrt 2 {\rm{]}}\, \cup \,( - 1,0)\, \cup \,{\rm{[}}\sqrt 2 , + \infty )\)
Từ đó tập nghiệm của hệ bất phương trình là: S = S1 ∩ S2 = \((2, +∞)\)
LG b
\(\left\{ \matrix{
{x^2} + 3x + 2 < 0 \hfill \cr
{x \over {x + 1}} \ge 0 \hfill \cr} \right.\)
Lời giải chi tiết:
Ta có:
\(\left\{ \matrix{
{x^2} + 3x + 2 < 0 \hfill \cr
{x \over {x + 1}} \ge 0 \hfill \cr} \right.\) \( \Leftrightarrow \left\{ \matrix{
- 2 < x < - 1 \hfill \cr
\left[ \matrix{
x < - 1 \hfill \cr
x \ge 0 \hfill \cr} \right. \hfill \cr} \right. \)
\(\Leftrightarrow - 2 < x < 1\)
Vậy \(S = (-2, -1)\)
Loigiaihay.com
- Bài 17 trang 222 SGK Đại số 10 Nâng cao
- Bài 18 trang 223 SGK Đại số 10 Nâng cao
- Bài 19 trang 223 SGK Đại số 10 Nâng cao
- Bài 20 trang 223 SGK Đại số 10 Nâng cao
- Bài 21 trang 223 SGK Đại số 10 Nâng cao
>> Xem thêm