Bài 10 trang 100 SGK Hình học 12


Trong không gian Oxyz cho đường thẳng d.a) Tìm toạ độ giao điểm A của d và (α).

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Trong không gian \(Oxyz\) cho đường thẳng \(d\):

\(\left\{ \matrix{
x = 1 - 2t \hfill \cr 
y = 2 + t \hfill \cr 
z = 3 - t \hfill \cr} \right.\)và mặt phẳng \((α) : 2x + y + z = 0\).

LG a

a) Tìm toạ độ giao điểm \(A\) của \(d\) và \((α)\).

Phương pháp giải:

Tham số hóa tọa độ điểm A theo tham số \(t\), thay tọa độ điểm A vào phương trình mặt phẳng \(\alpha\), tìm \(t\) và sauy ra tọa độ điểm \(A\).

Lời giải chi tiết:

\(A \in d \Rightarrow A\left( {1 - 2t;2 + t;3 - t} \right)\)

Thay tọa độ điểm \(A\) vào phương trình của mặt phẳng \((α)\), ta có:

\(2(1 - 2t) + (2 + t) + (3 - t) = 0 \Rightarrow t = {7 \over 4}  \)

\(\Rightarrow A\left( { - \frac{5}{2};\frac{{15}}{4};\frac{5}{4}} \right)\)

LG b

b) Viết phương trình mặt phẳng \((β)\) qua \(A\) và vuông góc với \( d\).

Phương pháp giải:

Mặt phẳng \((\beta )\) đi qua A và nhận VTCP của đường thẳng \(d\) là VTPT. Viết phương trình mặt phẳng \((\beta )\) khi biết một điểm đi qua và VTPT.

Lời giải chi tiết:

Đường thẳng \((d)\) có vectơ chỉ phương \(\overrightarrow a  = (-2; 1; -1)\). Mặt phẳng \((β)\) vuông góc với \((d)\), nhận \(\overrightarrow a \) làm vectơ pháp tuyến.

Phương trình của \((β)\) là:

\( - 2\left( {x + {{10} \over 4}} \right) + 1.\left( {y - {{15} \over 4}} \right) - 1.\left( {z - {5 \over 4}} \right) = 0\)

\( \Leftrightarrow 4x - 2y + 2z + 15 = 0\)

Loigiaihay.com


Bình chọn:
3.7 trên 3 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí