
Đề bài
Trong các tam giác trên các hình \(55, 56,57\) tam giác nào là tam giác cân, tam giác nào là tam giác đều? Vì sao?
Phương pháp giải - Xem chi tiết
Chứng minh tam giác cân: Ta chứng minh tam giác có hai cạnh bằng nhau hoặc hai góc bằng nhau.
Chứng minh tam giác đều: Ta chứng minh tam giác có ba cạnh bằng nhau, hoặc ba góc bằng nhau, hoặc tam giác cân có một góc bằng \(60^o\)
Lời giải chi tiết
Xét hình \(55\).
Tam giác \(ABD\) cân tại \(A\) vì có hai cạnh bằng nhau \(AB=AD.\)
Tam giác \(ACE\) cân tại \(A\) vì có hai cạnh bằng nhau \(AC=AE\) (do \(AB=AD,BC=DE\) nên \(AB+BC=AD+DE\) hay \(AC= AE\)).
Xét hình \(56\), ta tính được \(\widehat{G} = {180^0} -{70^0} -{40^0} = {70^0}\)
Tam giác \(∆GHI\) cân tại \(I\) vì có \(\widehat{G} = \widehat{H}= {70^0}\)
Xét hình \(57\).
\(∆OMK\) là tam giác cân tại \(M\) vì \(OM= MK\)
\(∆ONP\) là tam giác cân tại \(N\) vì \(ON=NP\)
\(∆OMN\) là tam giác đều vì \(OM = MN = ON\)
Do đó: \(\widehat {{M_1}} = \widehat {{N_1}} = {60^0}\) (1)
\(\widehat {{M_1}} + \widehat {{M_2}} = {180^0}\) (hai góc kề bù) (2)
\(\widehat {{N_1}} + \widehat {{N_2}} = {180^0}\) (hai góc kề bù) (3)
Từ (1), (2) và (3) suy ra: \(\widehat {{M_2}} = \widehat {{N_2}}\)
Xét \(∆OMK\) và \(∆ONP\) có:
+) \(OM = ON\) (gt)
+) \(MK = NP\) (gt)
+) \(\widehat {{M_2}} = \widehat {{N_2}}\) (chứng minh trên)
\(\Rightarrow ∆OMK = ∆ONP\) (c.g.c)
\(\Rightarrow \widehat {MKO} = \widehat {NPO}\) (hai góc tương ứng)
Vậy \(∆OKP\) là tam giác cân tại \(O.\)
Loigiaihay.com
Giải bài 31 trang 132 VBT toán 7 tập 1. Hai thanh AB và AC vì kèo một mái nhà thường bằng nhau (h.58) và thường tạo với nhau một góc bằng ...
Giải bài 32 trang 132 VBT toán 7 tập 1. Cho tam giác ABC cân tại A. Lấy điểm D thuộc cạnh AC, điểm E thuộc cạnh AB sao cho AD=AE...
Giải bài 33 trang 133 VBT toán 7 tập 1. Cho góc xOy có số đo 120^o, điểm A thuộc tia phân giác của góc đó...
Giải phần câu hỏi bài 6 trang 131 VBT toán 7 tập 1. Một tam giác cân có góc ở đỉnh bằng 50^o. Góc ở đáy tam giác cân đó bằng ...
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: