Đề số 9 – Đề kiểm tra học kì 1 – Toán 12

Bình chọn:
4.9 trên 7 phiếu

Đáp án và lời giải chi tiết Đề số 9 - Đề kiểm tra học kì 1 (Đề thi học kì 1) - Toán 12

Đề bài

Câu 1: Cho \(0 < a \ne 1\) và \(x > 0\), \(y > 0\). Chọn mệnh đề đúng trong các mệnh đề sau:

A. \({\log _a}\left( {x + y} \right) = {\log _a}x.{\log _a}y\).

B. \({\log _a}\left( {xy} \right) = {\log _a}x + {\log _a}y\).

C. \({\log _a}\left( {xy} \right) = {\log _a}x.{\log _a}y\).

D. \({\log _a}\left( {x + y} \right) = {\log _a}x + {\log _a}y\).

Câu 2: Có tất cả bao nhiêu giá trị nguyên của tham số thực \(m\) thuộc đoạn \(\left[ { - 2017;2017} \right]\) để hàm số \(y = {x^3} - 6{x^2} + mx + 1\) đồng biến trên khoảng \(\left( {0; + \infty } \right)\)?

A. \(2030\).

B. \(2005\).

C. \(2018\).

D. \(2006\).

Câu 3: Cho lăng trụ đứng \(ABC.A'B'C'\) có \(AB = AC = BB' = a\), \(\widehat {BAC} = 120^\circ \). Gọi \(I\) là trung điểm của \(CC'\). Ta có cosin của góc giữa hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {AB'I} \right)\) bằng:

A. \(\dfrac{{\sqrt 3 }}{2}\).

B. \(\dfrac{{\sqrt {30} }}{{10}}\).                                    

C. \(\dfrac{{3\sqrt 5 }}{{12}}\).  

D. \(\dfrac{{\sqrt 2 }}{2}\).

Câu 4 : Gọi \({V_1}\) là thể tích của khối lập phương \(ABCD.A'B'C'D'\), \({V_2}\) là thể tích khối tứ diện \(A'ABD\). Hệ thức nào sau đây là đúng?

A. \({V_1} = 4{V_2}\).

B. \({V_1} = 6{V_2}\).

C. \({V_1} = 2{V_2}\).

D. \({V_1} = 8{V_2}\).

Câu 5: Cho \(a{\log _2}3 + b{\log _6}2 + c{\log _6}3 = 5\) với \(a,\,\,b,\,\,c\) là các số tự nhiên. Khẳng định nào đúng trong các khẳng định sau đây?

A. \(a = b\).

B. \(a > b > c\).

C. \(b < c\).

D. \(b = c\).

Gốc: \(a{\log _2}3 + b{\log _6}2 + c{\log _6}5 = 5\)

Câu 6: Cho khối chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\), \(SA\) vuông góc với mặt phẳng đáy và khoảng cách từ \(A\) đến mặt phẳng \(\left( {SBC} \right)\) bằng \(\dfrac{{a\sqrt 2 }}{2}\). Gọi \(M\) là điểm thuộc cạnh \(SD\) sao cho \(\overrightarrow {SM}  = 3\overrightarrow {MD} \). Mặt phẳng \(\left( {ABM} \right)\) cắt cạnh \(SC\) tại điểm \(N\). Thể tích khối đa diện \(MNABCD\) bằng

A. \(\dfrac{{7{a^3}}}{{32}}\).

B. \(\dfrac{{15{a^3}}}{{32}}\).

C. \(\dfrac{{17{a^3}}}{{32}}\).

D. \(\dfrac{{11{a^3}}}{{96}}\).

Câu 7: Gọi \(S\) là tập hợp các giá trị thực của tham số \(m\) để hàm số \(y = {x^3} - 3m{x^2} + 4{m^3}\) có hai điểm cực trị \(A\) và \(B\) sao cho tam giác \(OAB\) có diện tích bằng \(4\) (\(O\) là gốc tọa độ). Ta có tổng giá trị tất cả các phần tử của tập \(S\) bằng

A. \(1\).

B. \(2\).

C. \( - 1\).

D. \(0\).

Câu 8 : Cho \({\rm{lo}}{{\rm{g}}_2}5 = a\). Tính \({\rm{lo}}{{\rm{g}}_2}200\) theo \(a\).

A. \(2 + 2a\).

B. \(4 + 2a\).

C. \(1 + 2a\).

D. \(3 + 2a\).

Câu 9: Cho hàm số \(y = \dfrac{1}{4}{x^4} - 2{x^2} + 2017\). Khẳng định nào sau đây là đúng?

A. Hàm số có một điểm cực tiểu và không có điểm cực đại.

B. Hàm số có một điểm cực đại và không có điểm cực tiểu.

C. Hàm số có một điểm cực đại và hai điểm cực tiểu.

D. Hàm số có một điểm cực tiểu và hai điểm cực đại.

Câu 10: Rút gọn biểu thức \(A = {a^{4{{\log }_{{a^2}}}3}}\) với \(0 < a \ne 1\) ta được kết quả là

A. \(9\).

B. \({3^4}\).

C. \({3^8}\).

D. \(6\).

Câu 11: Trong các mệnh đề sau, mệnh đề nào đúng?

A. Hai khối chóp có hai đáy là hai đa giác bằng nhau thì thể tích bằng nhau.

B. Hai khối đa diện có thể tích bằng nhau thì bằng nhau.

C. Hai khối lăng trụ có chiều cao bằng nhau thì thể tích bằng nhau.

D. Hai khối đa diện bằng nhau có thể tích bằng nhau.

Câu 12: Số điểm chung của đồ thị hàm số \(y = {x^3} - 2{x^2} + x - 12\) với trục \(Ox\) là

A. \(2\).

B. \(1\).

C. \(3\).

D. \(0\).

Câu 13: Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên R.

Đồ thị hàm số \(y = f'\left( x \right) \in \) như hình vẽ sau. Số điểm cực trị của hàm số \(y = f\left( x \right) - 2x\) là:

A. \(2\).               B. \(1\).

C. \(3\).               D. \(4\).

                                                                                                                      

Câu 14: Gọi \(M\), \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = {x^3} - 3{x^2} - 9x + 1\) trên đoạn \(\left[ {0;4} \right]\). Ta có \(m + 2M\) bằng:

A. \( - 14\).                                      

B. \( - 24\).

C. \( - 37\).

D. \( - 57\).

Câu 15: Hàm số \(y = \dfrac{1}{3}{x^3} - 2{x^2} + 3x - 1\) nghịch biến trên khoảng nào trong các khoảng sau đây?

A. \(\left( { - 1;3} \right)\).

B. \(\left( {1;4} \right)\).

C. \(\left( { - 3; - 1} \right)\).

D. \(\left( {1;3} \right)\).

Câu 16: Cắt khối lăng trụ \(MNP.M'N'P'\) bởi các mặt phẳng \(\left( {MN'P'} \right)\) và \(\left( {MNP'} \right)\) ta được những khối đa diện nào?

A. Ba khối tứ diện.

B. Hai khối tứ diện và hai khối chóp tứ giác.

C. Hai khối tứ diện và một khối chóp tứ giác.

D. Một khối tứ diện và một khối chóp tứ giác.

Câu 17: Thể tích của khối cầu bán kính \(R\) bằng:

A. \(\dfrac{1}{3}\pi {R^3}\).

B. \(\dfrac{2}{3}\pi {R^3}\).

C. \(\pi {R^3}\).

D. \(\dfrac{4}{3}\pi {R^3}\).

Câu 18: Có tất cả bao nhiêu giá trị nguyên dương của tham số \(m\) để hàm số \(y = \left( {1 - m} \right){x^4} + 2\left( {m + 3} \right){x^2} + 1\) có đúng một điểm cực tiểu và không có điểm cực đại?

A. \(1\).

B. \(3\).

C. \(2\).

D. \(0\).

Câu 19: Trong số đồ thị của các hàm số \(y = \dfrac{1}{x};\) \(y = {x^2} + 1;\) \(y = \dfrac{{{x^2} + 3x + 7}}{{x - 1}};\) \(y = \dfrac{x}{{{x^2} - 1}}\) có tất cả bao nhiêu đồ thị có tiệm cận ngang?

A. \(1\).

B. \(3\).

C. \(2\).

D. \(4\).

Câu 20: Cho khối chóp tứ giác đều có chiều cao bằng \(6\) và thể tích bằng \(8\). Độ dài cạnh đáy bằng

A. \(\dfrac{2}{{\sqrt 3 }}\).

B. \(3\).

C. \(4.\)

D. \(2\).

Câu 21: Hình lăng trụ tam giác đều có tất cả bao nhiêu mặt phẳng đối xứng

A. 4 mặt phẳng.

B. 1 mặt phẳng.

C. 3 mặt phẳng.

D. 2 mặt phẳng.

Câu 22: Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật, \(AB = a\sqrt 3 \) và \(AD = a\). Đường thẳng \(SA\) vuông góc với mặt phẳng đáy và \(SA = a\). Thể tích khối cầu ngoại tiếp hình chóp \(S.BCD\) bằng

A. \(\dfrac{{5\pi {a^3}\sqrt 5 }}{6}.\)

B. \(\dfrac{{5\pi {a^3}\sqrt 5 }}{{24}}.\)

C. \(\dfrac{{3\pi {a^3}\sqrt 5 }}{{25}}.\)

D. \(\dfrac{{3\pi {a^3}\sqrt 5 }}{8}.\)

Câu 23: Gọi \({m_0}\) là giá trị thực của tham số \(m\) để đồ thị hàm số \(y = {x^4} + 2m{x^2} + 4\) có 3 điểm cực trị nằm trên các trục tọa độ. Khẳng định nào sau đây là đúng?

A. \({m_0} \in \left( {1;3} \right)\)

B. \({m_0} \in \left( { - 5; - 3} \right)\).

C. \({m_0} \in \left( { - \dfrac{3}{2};0} \right)\)

D. \({m_0} \in \left( { - 3; - \dfrac{3}{2}} \right)\)            

Câu 24: Chọn mệnh đề đúng trong các mệnh đề sau?

A. Hình có đáy là hình bình hành thì có mặt cầu ngoại tiếp.

B. Hình chóp có đáy là hình thang vuông thì có mặt cầu ngoại tiếp.

C. Hình chóp có đáy là hình thang cân thì có mặt cầu ngoại tiếp.

D. Hình có đáy là hình tứ giác thì có mặt cầu ngoại tiếp.

Câu 25: Hàm số \(y =  - {x^4} + 8{x^3} - 6\) có tất cả bao nhiêu điểm cực trị?

A. \(0\).

B. \(2\).

C. \(1\).

D. \(3\).

Câu 26: Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(B\), \(AB = 3a\), \(BC = 4a\) và \(SA \bot \left( {ABC} \right)\). Góc giữa đường thẳng \(SC\) và mặt phẳng \(\left( {ABC} \right)\) bằng \(60^\circ \). Gọi \(M\) là trung điểm của cạnh \(AC\). Khoảng cách giữa hai đường thẳng \(AB\) và \(SM\) bằng

A. \(\dfrac{{10\sqrt 3 a}}{{\sqrt {79} }}\).

B. \(\dfrac{{5a}}{2}\).

C. \(5\sqrt 3 a\).

D. \(\dfrac{{5\sqrt 3 a}}{{\sqrt {79} }}\).

Câu 27: Vật thể nào trong các vật thể sau đây không phải là khối đa diện?

Câu 28: Cho hàm số \(y = \dfrac{{2x - 3}}{{4 - x}}\). Hãy chọn khẳng định đúng trong các khẳng định sau đây:

A. Hàm số nghịch biến trên \(\mathbb{R}\). 

B. Hàm số đồng biến trên mỗi khoảng xác định.

C. Hàm số đồng biến trên \(\mathbb{R}\).

D. Hàm số nghịch biến trên mỗi khoảng xác định.

Câu 29: Giá trị lớn nhất của hàm số \(y = {x^3} - 3x + 5\) trên đoạn \(\left[ {0;\dfrac{3}{2}} \right]\).

A. \(3\).

B. \(5\).

C. \(7\).

D. \(\dfrac{{31}}{8}\).

Câu 30: Cho hình chóp \(S.ABC\) có đáy là tam giác vuông tại \(C\), \(AB = a\sqrt 5 \), \(AC = a\). Cạnh bên \(SA = 3a\) và vuông góc vói mặt phẳng \(\left( {ABC} \right)\). Thể tích khối chóp \(S.ABC\) bằng

A. \({a^3}\).

B. \(\dfrac{{{a^3}\sqrt 5 }}{3}\).

C. \(2{a^3}\).

D. \(3{a^3}\)

Câu 31: Cho biết đồ thị sau là đồ thị của một trong bốn hàm số ở các phương án A, B, C, D. Đó là đồ thị của hàm số nào?

A. \(y = 2{x^3} - 3{x^2} + 1\).

B. \(y =  - {x^3} + 3x - 1\).

C. \(y = {x^3} - 3x + 1\).

D. \(y = 2{x^3} - 6x + 1\).

                                                  

Câu 32: Khoảng cách giữa hai điểm cực trị của đồ thị hàm số \(y = {x^3} + 3{x^2} - 4\) là

A. \(\sqrt 5 \).

B. \(4\sqrt 5 \).

C. \(2\sqrt 5 \).

D. \(3\sqrt 5 \).

Câu 33: Cho \(x = 2017!\). Giá trị của biểu thức \(A = \dfrac{1}{{{{\log }_{{2^2}}}x}} + \dfrac{1}{{{{\log }_{{3^2}}}x}} + ... + \dfrac{1}{{{{\log }_{{{2017}^2}}}x}}\) bằng

A. \(\dfrac{1}{2}\).

B. \(2\).

C. \(4\).

D. \(1\).

Câu 34: Cho hàm số \(y = f\left( x \right)\) xác định và có đạo hàm trên \(\mathbb{R}\backslash \left\{ { \pm 1} \right\}\). Hàm số có bảng biến thiên như hình vẽ dưới đây. Hỏi đồ thị hàm số \(y = f\left( x \right)\) có tất cả bao nhiêu đường tiệm cận?

 

A. \(4\).

B. \(1\).

C. \(3\).

D. \(2\).

Câu 35: Rút gọn biểu thức \(A = \dfrac{{\sqrt[3]{{{a^5}}}.{a^{\dfrac{7}{3}}}}}{{{a^4}.\sqrt[7]{{{a^{ - 2}}}}}}\) với \(a > 0\) ta được kết quả \(A = {a^{\dfrac{m}{n}}}\), trong đó \(m\), \(n \in {\mathbb{N}^*}\) và \(\dfrac{m}{n}\) là phân số tối giản. Khẳng định nào sau đây đúng?

A. \({m^2} + {n^2} = 43\).

B. \(2{m^2} + n = 15\).

C. \({m^2} - {n^2} = 25\).

D. \(3{m^2} - 2n = 2\).

Câu 36: Nếu \({\left( {7 + 4\sqrt 3 } \right)^{a - 1}} < 7 - 4\sqrt 3 \) thì

A. \(a < 1\).

B. \(a > 1\).

C. \(a > 0\).

D. \(a < 0\).

Câu 37: Cho tứ diện \(OABC\) có \(OA\), \(OB\), \(OC\) đôi một vuông góc với nhau. Biết \(OA = a\), \(OB = 2a\) và đường thẳng \(AC\) tạo với mặt phẳng \(\left( {OBC} \right)\) một góc \(60^\circ \). Thể tích khối tứ diện \(OABC\) bằng

A. \(\dfrac{{{a^3}\sqrt 3 }}{9}\).

B. \(3{a^3}\).

C. \({a^3}\).

D. \(\dfrac{{{a^3}\sqrt 3 }}{3}\).

Câu 38: Tiếp tuyến của đồ thị hàm số \(y = \dfrac{{x + 1}}{{x - 2}}\) tại điểm \(M\left( {1; - 2} \right)\) có phương trình là

A. \(y =  - 3x + 5\).

B. \(y =  - 3x + 1\).

C. \(y = 3x - 1\).

D. \(y = 3x + 2\).

Câu 39: Tổng số đỉnh, số cạnh và số mặt của một hình bát diện đều là

A. \(24\).

B. \(26\).

C. \(52\).

D. \(20\).

Câu 40: Cho đồ thị của hàm số \(y = f\left( x \right)\) như hình vẽ dưới đây:

Gọi \(S\) là tập hợp các giá trị nguyên dương của tham số \(m\) để hàm số \(y = \left| {f\left( {x - 2017} \right) + m} \right|\) có \(5\) điểm cực trị. Tổng tất cả các giá trị của các phần tử của tập \(S\) bằng

A. \(12\).

B. \(15\).

C. \(18\).

D. \(9\).

Câu 41: Cho hàm số \(y = f\left( x \right)\) có đạo hàm là hàm số liên tục trên R với đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ.

Biết \(f\left( a \right) > 0\), hỏi đồ thị hàm số \(y = f\left( x \right)\) cắt trục hoành tại nhiều nhất bao nhiêu điểm?

A. \(3\).                                            B. \(2\)

C. \(4\).                                            D. \(0\).

Câu 42: Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) để hàm số: \(y = \left( {m + 1} \right){x^3} + \left( {m + 1} \right){x^2} - 2x + 2\) nghịch biến trên R?

A. \(5\).

B. \(6\).

C. \(8\).

D. \(7\).

Câu 43: Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(a\), \(SA \bot \left( {ABC} \right)\), góc giữa đường thẳng \(SB\) và mặt phẳng \(\left( {ABC} \right)\) bằng \(60^\circ \). Khoảng cách giữa hai đường thẳng \(AC\) và \(SB\) bằng:

A. \(\dfrac{{a\sqrt 2 }}{2}\).        

B. \(2a\).

C. \(\dfrac{{a\sqrt {15} }}{5}\).

D. \(R = \dfrac{{a\sqrt 7 }}{7}\).

Câu 44: Đồ thị hàm số \(y = \dfrac{{\sqrt {1 - {x^2}} }}{{{x^2} + 2x}}\) có tất cả bao nhiêu tiệm cận đứng?

A. \(3\).

B. \(2\).

C. \(1\).

D. \(0\).

Câu 45: Cho \(0 < a \ne 1\), \(b > 0\) thỏa mãn điều kiện \({\log _a}b < 0\). Khẳng định nào sau đây là đúng?

A. \(\left[ \begin{array}{l}1 < b < a\\0 < b < a < 1\end{array} \right.\).

B. \(\left[ \begin{array}{l}1 < a < b\\0 < a < b < 1\end{array} \right.\)

.C. \(\left[ \begin{array}{l}0 < a < 1 < b\\0 < b < 1 < a\end{array} \right.\).

D. \(0 < b < 1 \le a\).

Câu 46: Tính bán kính \(R\) mặt cầu ngoại tiếp tứ diện đều \(ABCD\) cạnh \(a\sqrt 2 \).

A. \(R = a\sqrt 3 \).

B. \(R = \dfrac{{a\sqrt 3 }}{2}\).

C. \(R = \dfrac{{3a}}{2}\).

D. \(R = \dfrac{{3a\sqrt 2 }}{2}\).

Câu 47: Tìm tất cả các giá trị thực của \(x\) thỏa mãn đẳng thức \({\log _3}x = 3{\log _3}2 + {\log _9}25 - {\log _{\sqrt 3 }}3\).

A. \(\dfrac{{40}}{9}\).

B. \(\dfrac{{25}}{9}\).

C. \(\dfrac{{28}}{3}\).

D. \(\dfrac{{20}}{3}\).

Câu 48: Trong các biểu thức sau, biểu thức nào không có nghĩa?

A. \({\left( { - 4} \right)^{ - \dfrac{1}{3}}}\).

B. \({\left( { - \dfrac{3}{4}} \right)^0}\).

C. \({\left( { - 3} \right)^{ - 4}}\).

D. \({1^{ - \sqrt 2 }}\).

Câu 49: Cho \(0 < a \ne 1\) và \(b \in R\) Chọn mệnh đề sai trong các mệnh đề sau:

A. \({\log _a}{b^2} = 2{\log _a}b\).

B. \({\log _a}{a^b} = b\).

C. \({\log _a}1 = 0\).

D. \({\log _a}a = 1\).

Câu 50: Cho mặt cầu tâm \(O,\) bán kính \(R = 3.\) Mặt phẳng \(\left( P \right)\) nằm cách tâm \(O\) một khoảng bằng \(1\) và cắt mặt cầu theo một đường tròn có chu vi bằng:

A. \(4\sqrt 2 \pi \).

B. \(6\sqrt 2 \pi \).

C. \(3\sqrt 2 \pi \).

D. \(8\sqrt 2 \pi \).

Lời giải chi tiết

1

2

3

4

5

B

D

B

B

D

6

7

8

9

10

D

D

D

C

A

11

12

13

14

15

D

B

C

B

D

16

17

18

19

20

A

D

A

C

D

21

22

23

24

25

A

A

D

C

C

26

27

28

29

30

A

A

B

B

A

31

32

33

34

35

C

C

B

C

B

36

37

38

39

40

D

A

B

B

A

41

42

43

44

45

B

D

C

C

C

46

47

48

49

50

B

A

A

A

A

Xem lời giải chi tiết đề thi học kì 1 tại Tuyensinh247.com

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

Các bài liên quan: - ĐỀ KIỂM TRA HỌC KÌ 1 (ĐỀ THI HỌC KÌ 1) – TOÁN 12

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu