Bài 94 trang 131 SGK giải tích 12 nâng cao


Giải các phương trình

Lựa chọn câu để xem lời giải nhanh hơn

LG a

\(\eqalign{
{\log _3}\left( {\log _{0,5}^2x - 3{{\log }_{0,5}}x + 5} \right) = 2\,; \cr} \)

Lời giải chi tiết:

ĐK:

\(\left\{ \begin{array}{l}
\log _{0,5}^2x - 3{\log _{0,5}}x + 5 > 0\\
x > 0
\end{array} \right.\)

Khi đó,

\(\eqalign{
& {\log _3}\left( {\log _{0,5}^2x - 3{{\log }_{0,5}}x + 5} \right) = 2 \cr&\Leftrightarrow \log _{0,5}^2x - 3{\log _{0,5}}x + 5 = 9 \cr 
& \Leftrightarrow \log _{0,5}^2x - 3{\log _{0,5}x} - 4 = 0\cr& \Leftrightarrow \left[ \matrix{
{\log _{0,5}x} = - 1 \hfill \cr 
{\log _{0,5}x} = 4 \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
x = {\left( {0,5} \right)^{ - 1}} = 2 \hfill \cr 
x = {\left( {0,5} \right)^4} = {1 \over {16}} \hfill \cr} \right. (TM)\cr} \)

Vậy \(S = \left\{ {2;{1 \over {16}}} \right\}\)

LG b

\(\eqalign{
{\log _2}\left( {{{4.3}^x} - 6} \right) - {\log _2}\left( {{9^x} - 6} \right) = 1\,; \cr } \)

Lời giải chi tiết:

ĐK:

\(\left\{ \begin{array}{l}
{4.3^x} - 6 > 0\\
{9^x} - 6 > 0
\end{array} \right.\)

Ta có: \({\log _2}\left( {{{4.3}^x} - 6} \right) - {\log _2}\left( {{9^x} - 6} \right) = 1 \)

\(\Leftrightarrow {\log _2}\left( {{{4.3}^x} - 6} \right) = 1+{\log _2}\left( {{9^x} - 6} \right)\)

\(\begin{array}{l}
\Leftrightarrow {\log _2}\left( {{{4.3}^x} - 6} \right) = {\log _2}2 + {\log _2}\left( {{9^x} - 6} \right)\\
\Leftrightarrow {\log _2}\left( {{{4.3}^x} - 6} \right) = {\log _2}\left[ {2\left( {{9^x} - 6} \right)} \right]\\
\Leftrightarrow {4.3^x} - 6 = 2\left( {{9^x} - 6} \right)\\
\Leftrightarrow {2.9^x} - {4.3^x} - 6 = 0\\
\Leftrightarrow 2.{\left( {{3^x}} \right)^2} - {4.3^x} - 6 = 0
\end{array}\)

Đặt \(t = {3^x}>0\) ta được phương trình:

\(2{t^2} - 4t - 6 = 0\)

\( \Leftrightarrow t = 3 \)(TM) hoặc \(t=-1\) (loại)

\(\Leftrightarrow {3^x} = 3 \Leftrightarrow x = 1\)

Vậy \(S = \left\{ 1 \right\}\)

LG c

\(\eqalign{
1 - {1 \over 2}\log \left( {2x - 1} \right) = {1 \over 2}\log \left( {x - 9} \right)\,; \cr} \)

Lời giải chi tiết:

Điều kiện: \(x >9\)

\(\eqalign{
& 1 - {1 \over 2}\log \left( {2x - 1} \right) = {1 \over 2}\log \left( {x - 9} \right) \cr&\Leftrightarrow 2 = \log \left( {2x - 1} \right) + \log \left( {x - 9} \right) \cr 
& \Leftrightarrow \log [\left( {2x - 1} \right)\left( {x - 9} \right)] = 2 \cr&\Leftrightarrow \left( {2x - 1} \right)\left( {x - 9} \right) = 100 \cr 
& \Leftrightarrow 2{x^2} - 19x - 91 = 0 \cr&\Leftrightarrow \left[ \matrix{
x = 13 \hfill \cr 
x = - 3,5\,\,\left( \text {loại} \right) \hfill \cr} \right. \cr} \)

Vậy \(x=13\)

LG d

\(\eqalign{
{1 \over 6}{\log _2}\left( {x - 2} \right) - {1 \over 3} = {\log _{{1 \over 8}}}\sqrt {3x - 5} . \cr} \)

Lời giải chi tiết:

Điều kiện: \(x > 2\)

Ta có: \({\log _{{1 \over 8}}}\sqrt {3x - 5}  = {\log _{{2^{ - 3}}}}{\left( {3x - 5} \right)^{{1 \over 2}}} \)

\( =  - \frac{1}{3}{\log _2}{\left( {3x - 5} \right)^{\frac{1}{2}}}=  - {1 \over 6}{\log _2}\left( {3x - 5} \right)\)

Phương trình đã có trở thành:

\(\frac{1}{6}{\log _2}\left( {x - 2} \right) - \frac{1}{3} =  - \frac{1}{6}{\log _2}\left( {3x - 5} \right)  \)

\(\eqalign{
& \Leftrightarrow {1 \over 6}{\log _2}\left( {x - 2} \right) + {1 \over 6}{\log _2}\left( {3x - 5} \right) = {1 \over 3} \cr 
& \Leftrightarrow {\log _2}\left( {x - 2} \right) + {\log _2}\left( {3x - 5} \right) = 2\cr& \Leftrightarrow {\log _2}[\left( {x - 2} \right)\left( {3x - 5} \right)] = 2 \cr 
& \Leftrightarrow \left( {x - 2} \right)\left( {3x - 5} \right) = 4 \cr 
& \Leftrightarrow 3{x^2} - 11x + 10 = 4 \Leftrightarrow 3{x^2} - 11x + 6 = 0\cr&\Leftrightarrow x = 3\,\,\text{ hoặc }\,\,x = {2 \over 3}. \cr} \)

Với điều kiện \(x > 2\) ta chỉ nhận nghiệm \(x = 3\).

Vậy \(S = \left\{ 3 \right\}\)

Loigiaihay.com


Bình chọn:
4 trên 4 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài