Bài 88 trang 130 SGK giải tích 12 nâng cao


Gọi c là cạnh huyền, a và b là hai cạnh góc vuông của một tam giác vuông. Chứng minh rằng:

Đề bài

Gọi c là cạnh huyền, a và b là hai cạnh góc vuông của một tam giác vuông. Chứng minh rằng: 

\({\log _{b + c}}a + {\log _{c - b}}a = 2{\log _{b + c}}a.{\log _{c - b}}a\)

Phương pháp giải - Xem chi tiết

Dùng công thức \({\log _b}a = \frac{1}{{{{\log }_a}b}}\) đưa các số hạng trong biểu thức về cùng cơ số a.

Lời giải chi tiết

Ta có: \({\log _{b + c}}a + {\log _{c - b}}a = 2{\log _{b + c}}a.{\log _{c + b}}a\)

\(\eqalign{
& \Leftrightarrow {1 \over {{{\log }_a}\left( {b + c} \right)}} + {1 \over {{{\log }_a}\left( {c - b} \right)}} = {2 \over {{{\log }_a}\left( {b + c} \right).{{\log }_a}\left( {c - b} \right)}} \cr 
& \Leftrightarrow {\log _a}\left( {c - b} \right) + {\log _a}\left( {b + c} \right) = 2 \cr 
& \Leftrightarrow {\log _a}[\left( {c - b} \right)\left( {b + c} \right)] = 2 \cr 
& \Leftrightarrow {\log _a}\left( {{c^2} - {b^2}} \right) = 2\cr&\Leftrightarrow {c^2} - {b^2} = {a^2} \Leftrightarrow {a^2} + {b^2} = {c^2} \cr} \)

Tam giác vuông cạnh huyền c, hai cạnh góc vuông a và b nên ta có \({a^2} + {b^2} = {c^2}\) (luôn đúng)

Từ đó suy ra đpcm.

Loigiaihay.com


Bình chọn:
3.6 trên 5 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài