Bài 58 Trang 177 SGK Đại số và Giải tích 12 Nâng cao


cho hình phẳng A được giới hạn bởi đường cong có phương trình và các đường thẳng Tính thể tích khối tròn xoay tạo thành khi quay A quanh trục hoành.

Đề bài

Cho hình phẳng A được giới hạn bởi đường cong có phương trình \(y = {x^{{1 \over 2}}}{e^{{x \over 2}}}\) và các đường thẳng \(x = 1,x = 2,y = 0.\) Tính thể tích khối tròn  xoay tạo thành khi quay A quanh trục hoành.

Phương pháp giải - Xem chi tiết

Sử dụng công thức tính thể tích \(V = \pi \int\limits_a^b {{f^2}\left( x \right)dx} \)

Lời giải chi tiết

Thể tích cần tìm là: \(V = \pi \int\limits_1^2 {{{\left( {{x^{\frac{1}{2}}}{e^{\frac{x}{2}}}} \right)}^2}dx} = \pi \int\limits_1^2 {x.{e^x}} dx\)

Đặt

\(\left\{ \matrix{
u = x \hfill \cr 
dv = {e^x}dx \hfill \cr} \right. \Rightarrow \left\{ \matrix{
du = dx \hfill \cr 
v = {e^x} \hfill \cr} \right.\)

Do đó \(V = \pi \left( {\left. {x{e^x}} \right|_1^2 - \int\limits_1^2 {{e^x}dx} } \right) \) \(= \pi \left( {2{e^2} - e - {e^2} + e} \right) = \pi {e^2}\)

Loigiaihay.com


Bình chọn:
3.3 trên 4 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí