Bài 45 Trang 176 SGK Đại số và Giải tích 12 Nâng cao

Bình chọn:
3.5 trên 6 phiếu

Xác định số b dương để tích phân có giá trị lớn nhất.

Bài 45. Xác định số b dương để tích phân \(\int\limits_0^b {\left( {x - {x^2}} \right)dx} \) có giá trị lớn nhất.

Giải

Ta có \(\int\limits_0^b {\left( {x - {x^2}} \right)} dx = \left. {\left( {{{{x^2}} \over 2} - {{{x^3}} \over 3}} \right)} \right|_0^b = {{{b^2}} \over 2} - {{{b^3}} \over 3}\)
Xét hàm số \(I\left( b \right) = {{{b^2}} \over 2} - {{{b^3}} \over 3}\) với \(b>0\)
ta có

\(\eqalign{
& I'\left( b \right) = b - {b^2} \cr
& I'\left( b \right) = 0 \Leftrightarrow b = 0;b = 1 \cr} \)

Bảng biến thiên

\( I(b)\) đạt giá trị lớn nhất bằng \({1\over 6}\) khi \(b=1\)

loigiaihay.com

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu



Các bài liên quan