Bài 50 Trang 176 SGK Đại số và Giải tích 12 Nâng cao


Tính các tích phân sau:

Lựa chọn câu để xem lời giải nhanh hơn

Tính các tích phân sau: 

LG a

\(\int\limits_0^{{\pi  \over 2}} {{x^2}\sin 2xdx;} \)

Phương pháp giải:

Sử dụng phương pháp tích phân từng phần 

Đặt\(\left\{ \matrix{u = {x^2} \hfill \cr dv = \sin 2xdx \hfill \cr} \right. \)

Lời giải chi tiết:

Đặt

\(\left\{ \matrix{
u = {x^2} \hfill \cr 
dv = \sin 2xdx \hfill \cr} \right. \Rightarrow \left\{ \matrix{
du = 2xdx \hfill \cr 
v = - {1 \over 2}\cos 2x \hfill \cr} \right.\)

Do đó \(\int\limits_0^{{\pi  \over 2}} {{x^2}\sin 2xdx}\) \(  = \left. { - {1 \over 2}{x^2}\cos 2x} \right|_0^{{\pi  \over 2}} + \int\limits_0^{{\pi  \over 2}} {{x}\cos 2xdx} \)
\( = {{{\pi ^2}} \over 8} + \int\limits_0^{{\pi  \over 2}} {x\cos 2xdx\,\,\,\,\,\,\,\left( 1 \right)} \)
Đặt

\(\left\{ \matrix{
u = x \hfill \cr 
dv = \cos 2xdx \hfill \cr} \right. \Rightarrow \left\{ \matrix{
du = dx \hfill \cr 
v = {1 \over 2}\sin 2x \hfill \cr} \right.\)

Do đó \(\int\limits_0^{{\pi  \over 2}} {x\cos 2xdx}\) \( = \left. {\frac{1}{2}x\sin 2x} \right|_0^{\frac{\pi }{2}} - \frac{1}{2}\int\limits_0^{\frac{\pi }{2}} {\sin 2xdx}  \) \(= 0 - \left. {\frac{1}{2}.\frac{{ - \cos 2x}}{2}} \right|_0^{\frac{\pi }{2}}\) \(= \left. {{1 \over 4}\cos 2x} \right|_0^{{\pi  \over 2}} =  - {1 \over 2}\,\,\,\,\,\,\,\,\left( 2 \right)\)
Thay (2) vào (1) ta được: \(\int\limits_0^{{\pi  \over 2}} {{x^2}\sin 2xdx = {{{\pi ^2}} \over 8}}  - {1 \over 2}.\)

LG b

\(\int\limits_1^2 {x\left( {2{x^2} + 1} \right)} dx;\)

Phương pháp giải:

Đổi biến \(u = 2{x^2} + 1\)

Lời giải chi tiết:

Đặt \(u = 2{x^2} + 1 \Rightarrow du = 4xdx \) \(\Rightarrow xdx = {{du} \over 4}\)

\(\int\limits_1^2 {x\left( {2{x^2} + 1} \right)dx = {1 \over 4}} \int\limits_3^9 {udu} \) \( = \left. {{1 \over 8}{u^2}} \right|_3^9 = 9\)

Cách khác:

\(\int\limits_1^2 {x\left( {2{x^2} + 1} \right)dx} \) \( = \int\limits_1^2 {\left( {2{x^3} + x} \right)dx} \) \( = \left. {\left( {\dfrac{{2{x^4}}}{4} + \dfrac{{{x^2}}}{2}} \right)} \right|_1^2\) \( = 10 - 1 = 9\)

LG c

\(\int\limits_2^3 {\left( {x - 1} \right)} {e^{{x^2} - 2x}}dx.\)

Phương pháp giải:

Đổi biến \(u = {x^2} - 2x\).

Lời giải chi tiết:

Đặt \(u = {x^2} - 2x \Rightarrow du = 2\left( {x - 1} \right)dx \) \(\Rightarrow \left( {x - 1} \right)dx = {{du} \over 2}\)

\(\int\limits_2^3 {\left( {x - 1} \right)} {e^{{x^2} - 2x}}dx \) \(= {1 \over 2}\int\limits_0^3 {{e^u}du = } \left. {{1 \over 2}{e^u}} \right|_0^3 = {1 \over 2}\left( {{e^3} - 1} \right).\)

 Loigiaihay.com


Bình chọn:
3.3 trên 4 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài