Bài 52 Trang 177 SGK Đại số và Giải tích 12 Nâng cao


Tính diện tích của các hình phẳng giới hạn bởi:

Lựa chọn câu để xem lời giải nhanh hơn

Tính diện tích của các hình phẳng giới hạn bởi:

LG a

Parabol \(y = {x^2} - 2x + 2,\) tiếp tuyến của nó tại điểm \(M(3;5)\) và trục tung

Phương pháp giải:

- Viết phương trình tiếp tuyến.

- Dựng hình suy ra công thức tính diện tích.

Lời giải chi tiết:

 

Ta có \(y' = 2x - 2 \Rightarrow y'\left( 3 \right) = 4.\)
Phương trình tiếp tuyến với parabol tại M(3;5) là:
\(y - 5 = 4\left( {x - 3} \right) \Leftrightarrow y = 4x - 7\)
Gọi S là diện tích cần tìm, ta có :

\(\eqalign{
& S = \int\limits_0^3 {\left( {{x^2} - 2x + 2 - 4x + 7} \right)} dx \cr 
& \,\,\, = \int\limits_0^3 {\left( {{x^2} - 6x + 9} \right)} dx = \int\limits_0^3 {{{\left( {x - 3} \right)}^2}dx} \cr 
& \,\,\, = \left. {{1 \over 3}{{\left( {x - 3} \right)}^3}} \right|_0^3 = 9. \cr} \)

LG b

Parabol \(y =  - {x^2} + 4x - 3\) và các tiếp tuyến của nó tại các điểm \(A(0;-3)\) và \(B(3;0)\)

Phương pháp giải:

- Viết phương trình tiếp tuyến.

- Dựng hình suy ra công thức tính diện tích.

Lời giải chi tiết:

Ta có \(y' =  - 2x + 4 \) \(\Rightarrow y'\left( 0 \right) = 4;y'\left( 3 \right) =  - 2\)
Phương trình tiếp tuyến tại \(A(0;3)\) là :
\(y + 3 = 4\left( {x - 0} \right) \Leftrightarrow y = 4x - 3\)
Phương trình tiếp tuyến tại \(B(3;0)\) là :
\(y =  - 2\left( {x - 3} \right) \Leftrightarrow y =  - 2x + 6\)
Giao điểm của hai tiếp tuyến là \(C\left( {{3 \over 2};3} \right).\) 

Kí hiệu \({A_1}\) và \({A_2}\) là tam giác cong \(ACD\) Và \(BCD\). Ta có :

\(S\left( {{A_1}} \right) = \int\limits_0^{{3 \over 2}} {\left( {4x - 3 + {x^2} - 4x + 3} \right)} dx \) \(= \int\limits_0^{{3 \over 2}} {{x^2}dx = \left. {{{{x^3}} \over 3}} \right|_0^{{3 \over 2}}}  = {9 \over 8}\)

\(S\left( {{A_2}} \right) = \int\limits_{{3 \over 2}}^3 {\left( { - 2x + 6 + {x^2} - 4x + 3} \right)} dx \) \(= \int\limits_{{3 \over 2}}^3 {{{\left( {x - 3} \right)}^2}dx = } \left. {{1 \over 3}{{\left( {x - 3} \right)}^3}} \right|_{{3 \over 2}}^3 = {9 \over 8}\)

Vậy \(S = S\left( {{A_1}} \right) + S\left( {{A_2}} \right) = {9 \over 8} + {9 \over 8} = {9 \over 4}\)

 Loigiaihay.com


Bình chọn:
3.4 trên 5 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài