Bài 47 Trang 176 SGK Đại số và Giải tích 12 Nâng cao


Cho hàm số f liên tục trên Tỉ số : được gọi là giá trị trung bình của hàm số f trên và được kí hiệu là . Chứng minh rằng tồn tại điểm sao cho

Đề bài

Cho hàm số f liên tục trên \(\left[ {a;b} \right].\) Tỉ số : \({1 \over {b - a}}\int\limits_a^b {f\left( x \right)} dx\) được gọi là giá trị trung bình của hàm số f trên \(\left[ {a;b} \right]\) và được kí hiệu là \(m\left( f \right)\). Chứng minh rằng tồn tại điểm \(c \in \left[ {a;b} \right]\) sao cho \(m\left( f \right) = f\left( c \right)\)

Lời giải chi tiết

Giả sử m và M tương ứng là giá trị bé nhất và lớn nhất của hàm số f trên \(\left[ {a;b} \right]\).

Ta có \(m \le f\left( x \right) \le M\,\,\forall x \in \left[ {a;b} \right]\)
Theo kết quả: \(f(x)\ge g(x)\) trên đoạn \([a;b]\) thì \(\int\limits_a^b {f(x)} dx \ge \int\limits_a^b {g(x)dx} \)

Ta có:

\(\eqalign{
& \int\limits_a^b {mdx \le \int\limits_a^b {f\left( x \right)dx} } \le \int\limits_a^b {Mdx}\cr &\Rightarrow m\left( {b - a} \right) \le \int\limits_a^b {f\left( x \right)dx \le M\left( {b - a} \right)} \cr 
& \Rightarrow m \le {1 \over {b - a}}\int\limits_a^b {f\left( x \right)} dx \le M \cr} \)

Vì \(f\) là hàm liên tục nên tồn tại \(c \in \left[ {a;b} \right]\) để \(m\le f(c)\le M\) hay \(f\left( c \right) = {1 \over {b - a}}\int\limits_a^b {f\left( x \right)} dx.\)

Cách khác:

Ta có: \(m\left( f \right) = \dfrac{1}{{b - a}}\int\limits_a^b {f\left( x \right)dx} \)

Gọi F(x) là một nguyên hàm của f(x)

=> F’(x) = f(x) =>F(x) liên tục trên [a; b] có đạo hàm trên (a; b) và thỏa mãn:

\(\int\limits_a^b {f\left( x \right)dx}  = F\left( b \right) - F\left( a \right)\)

\( \Rightarrow m\left( f \right) = \dfrac{1}{{b - a}}.\left( {F\left( b \right) - F\left( a \right)} \right)\) \( = \dfrac{{F\left( b \right) - F\left( a \right)}}{{b - a}}\)

Theo định lý Lagrăng thì ∃c ∈(a;b) sao cho

\(\dfrac{{F\left( b \right) - F\left( a \right)}}{{b - a}} = F'\left( c \right)\)

Vì F' (c)=f(c) => ∃c ∈(a;b) để m(f) = f(c) (đpcm)

 Loigiaihay.com


Bình chọn:
3.3 trên 3 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài