Bài 2.4 trang 100 SBT giải tích 12


Giải bài 2.4 trang 100 sách bài tập giải tích 12. Tìm khẳng định sai trong các khẳng định sau:...

Đề bài

Tìm khẳng định sai trong các khẳng định sau:

A. \({2^{ - 2}} < 1 \)

B. \({(0,013)^{ - 1}} > 75\)

C. \({({\pi  \over 4})^{\sqrt 5  - 2}} > 1\)

D. \({({1 \over 3})^{\sqrt 8  - 3}} < 3\)

Phương pháp giải - Xem chi tiết

Sử dụng các tính chất so sánh lũy thừa:

+ Nếu \(a > 1\) thì \({a^\alpha } > {a^\beta } \Leftrightarrow \alpha  > \beta \).

+ Nếu \(0 < a < 1\) thì \({a^\alpha } > {a^\beta } \Leftrightarrow \alpha  < \beta \).

Lời giải chi tiết

Ta xét từng trường hợp xem đúng hay sai:

A. \({2^{ - 2}} = {1 \over {{2^2}}}={1 \over {{4}}} < 1 \) \(\Rightarrow \) A đúng.

B. \({(0,013)^{ - 1}} = {1 \over {0,013}}  = \frac{1}{{\frac{{13}}{{1000}}}}\) \(={1000 \over {13}}> \frac{{975}}{{13}}= 75\)

\( \Rightarrow \) B đúng.

C. Vì \(0 < {\pi  \over 4}<1\) và \({\sqrt 5  - 2} >0\) nên \( {\left( {\frac{\pi }{4}} \right)^{\sqrt 5  - 2}} > {\left( {\frac{\pi }{4}} \right)^0} \Rightarrow {\left( {\frac{\pi }{4}} \right)^{\sqrt 5  - 2}} > 1\)

\( \Rightarrow \) C sai.

D. Vì \(0 < {1 \over 3}<1\) và \(\sqrt 8  - 3 > -1\) nên

\({\left( {\frac{1}{3}} \right)^{\sqrt 8  - 3}} < {\left( {\frac{1}{3}} \right)^{ - 1}} = 3 \) \(\Rightarrow {\left( {\frac{1}{3}} \right)^{\sqrt 8  - 3}} < 3\)

\(\Rightarrow \) D đúng.

Chọn C.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 1: Lũy thừa

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài