Bài 1.6 trang 12 SBT hình học 12
Giải bài 1.6 trang 12 sách bài tập hình học 12. Tính sin của góc tạo bởi hai mặt kề nhau (tức là hai mặt có một cạnh chung) của một tứ diện đều.
Đề bài
Tính sin của góc tạo bởi hai mặt kề nhau (tức là hai mặt có một cạnh chung) của một tứ diện đều.
Phương pháp giải - Xem chi tiết
Sử dụng lý thuyết:
Góc giữa hai mặt phẳng bằng góc giữa hai đường thẳng cùng vuông góc với giao tuyến.
Lời giải chi tiết
Xét tứ diện đều ABCD cạnh bằng a. Gọi M và N theo thứ tự là trung điểm của AB và CD.
Khi đó DM⊥AB,CM⊥AB (trung tuyến trong tam giác đều cùng là đường cao)
Ta có:
{(DAB)∩(CAB)=ABDM⊥ABCM⊥AB
⇒ góc giữa hai mặt phẳng (CAB) và (DAB) bằng góc giữa DM và CM và là góc ^CMD.
Xét tam giác DAM vuông tại M có DA=a,^DAM=600 ⇒DM=DAsin600=a√32
Ta có: ΔDAB=ΔCAB⇒DM=CM=a√32
Tam giác DMC cân tại M có N là trung điểm CD nên MN vừa là đường trung tuyến vừa là đường cao.
Do đó MN⊥CD
Xét tam giác CMN vuông tại N có CM=a√32,CN=a2
⇒sin^CMN=CNCM=a2a√32=1√3
⇒cos^CMN=√1−(1√3)2=√2√3
Từ đó suy ra: sin^CMD=2sin^CMNcos^CMN=2.1√3.√2√3=2√23.
Loigiaihay.com


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |