Bài 27 trang 105 SBT Hình học 10 Nâng cao


Giải bài tập Bài 27 trang 105 SBT Hình học 10 Nâng cao

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Cho ba điểm \(A(2 ; 0), B(4 ; 1), C(1 ; 2).\)

LG a

Chứng minh rằng \(A, B, C\) là ba đỉnh của  một tam giác.

Lời giải chi tiết:

\(\overrightarrow {AB}  = (2 ; 1),  \overrightarrow {AC}  = ( - 1 ; 2)\), \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \) không cùng phương . Do đó \(A, B, C\) không thẳng hàng và là ba đỉnh của một tam giác.

LG b

 Viết phương trình đường phân giác trong của góc \(A.\)

Lời giải chi tiết:

Phương trình đường thẳng \(AB\): \(x-2y-2=0.\)

Phương trình đường thẳng \(AC\): \(2x+y-4=0.\)

Phương trình các đường phân giác trong và ngoài của góc \(A\) là

\( \dfrac{{x - 2y - 2}}{{\sqrt {{1^2} + {2^2}} }} =  \pm  \dfrac{{2x + y - 4}}{{\sqrt {{2^2} + {1^2}} }}\)

\(\Leftrightarrow   \left[ \begin{array}{l}x + 3y - 2 = 0\,\,\,\,\,\,\,\,\,\,(1)\\3x - y - 6 = 0\,\,\,\,\,\,\,\,\,\,(2)\end{array} \right.\)

Thay lần lượt tọa độ của \(B\) và \(C\) vào vế trái của (1) ta được

\(4 + 3.1 - 2 = 5 ;\) \(  1 + 3.2 - 2 = 5\).

Do đó \(B, C\) cùng phía đối với đường thẳng có phương trình (1), vậy phương trình đường phân giác trong của góc \(A\) là  \(3x-y-6=0.\)

LG c

Tìm tọa độ tâm \(I\) của đường tròn nội tiếp tam giác \(ABC.\)

Lời giải chi tiết:

\(\overrightarrow {BC}  = ( - 3 ; 1)\). Phương trình đường thẳng \(BC\) là \(x+3y-7=0.\)

Phương trình các đường phân giác trong và ngoài của góc \(B\) là

\( \dfrac{{x - 2y - 2}}{{\sqrt {{1^2} + {2^2}} }} =  \pm  \dfrac{{x + 3y - 7}}{{\sqrt {{1^2} + {3^2}} }}\)

\(\Leftrightarrow     \left[ \begin{array}{l}(\sqrt 2  - 1)x - (2\sqrt 2  + 3)y + 7 - 2\sqrt 2  = 0\,\,\,\,\,\,\,\,(3)\\(\sqrt 2  + 1)x + (3 - 2\sqrt 2 )y - 7 - 2\sqrt 2  = 0 \,\,\,\,\,\,\,\,(4)\end{array} \right.\)

Thay lần lượt tọa độ của \(A\) và \(C\) vào vế trái của (3) ta được:

\((\sqrt 2  - 1).2 + 7 - 2\sqrt 2  = 5 ;\) \(     (\sqrt 2  - 1).1 - (2\sqrt 2  + 3).2 + 7 - 2\sqrt 2  =  - 5\sqrt 2. \)

Suy ra phương trình đường phân giác trong của góc \(B\) là

\((\sqrt 2  - 1)x - (2\sqrt 2  + 3)y + 7 - 2\sqrt 2  = 0.\)

Tâm \(I\) của đường tròn nội tiếp tam giác là giao điểm của các đường phân giác trong. Tọa độ của \(I\) là nghiệm của hệ

\(\left\{ \begin{array}{l}3x - y - 6 = 0\\(\sqrt 2  - 1)x - (2\sqrt 2  + 3)y + 7 - 2\sqrt 2  = 0\end{array} \right. \)

\(  \Leftrightarrow   \left\{ \begin{array}{l}x =  \dfrac{{5 + 2\sqrt 2 }}{{2 + \sqrt 2 }}\\y =  \dfrac{3}{{2 + \sqrt 2 }}\end{array} \right.\).

Vậy \(I = \left( { \dfrac{{5 + 2\sqrt 2 }}{{2 + \sqrt 2 }} ;  \dfrac{3}{{2 + \sqrt 2 }}} \right)\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!