Bài 27 trang 105 SBT Hình học 10 Nâng cao


Giải bài tập Bài 27 trang 105 SBT Hình học 10 Nâng cao

Lựa chọn câu để xem lời giải nhanh hơn

Cho ba điểm \(A(2 ; 0), B(4 ; 1), C(1 ; 2).\)

LG a

Chứng minh rằng \(A, B, C\) là ba đỉnh của  một tam giác.

Lời giải chi tiết:

\(\overrightarrow {AB}  = (2 ; 1),  \overrightarrow {AC}  = ( - 1 ; 2)\), \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \) không cùng phương . Do đó \(A, B, C\) không thẳng hàng và là ba đỉnh của một tam giác.

LG b

 Viết phương trình đường phân giác trong của góc \(A.\)

Lời giải chi tiết:

Phương trình đường thẳng \(AB\): \(x-2y-2=0.\)

Phương trình đường thẳng \(AC\): \(2x+y-4=0.\)

Phương trình các đường phân giác trong và ngoài của góc \(A\) là

\( \dfrac{{x - 2y - 2}}{{\sqrt {{1^2} + {2^2}} }} =  \pm  \dfrac{{2x + y - 4}}{{\sqrt {{2^2} + {1^2}} }}\)

\(\Leftrightarrow   \left[ \begin{array}{l}x + 3y - 2 = 0\,\,\,\,\,\,\,\,\,\,(1)\\3x - y - 6 = 0\,\,\,\,\,\,\,\,\,\,(2)\end{array} \right.\)

Thay lần lượt tọa độ của \(B\) và \(C\) vào vế trái của (1) ta được

\(4 + 3.1 - 2 = 5 ;\) \(  1 + 3.2 - 2 = 5\).

Do đó \(B, C\) cùng phía đối với đường thẳng có phương trình (1), vậy phương trình đường phân giác trong của góc \(A\) là  \(3x-y-6=0.\)

LG c

Tìm tọa độ tâm \(I\) của đường tròn nội tiếp tam giác \(ABC.\)

Lời giải chi tiết:

\(\overrightarrow {BC}  = ( - 3 ; 1)\). Phương trình đường thẳng \(BC\) là \(x+3y-7=0.\)

Phương trình các đường phân giác trong và ngoài của góc \(B\) là

\( \dfrac{{x - 2y - 2}}{{\sqrt {{1^2} + {2^2}} }} =  \pm  \dfrac{{x + 3y - 7}}{{\sqrt {{1^2} + {3^2}} }}\)

\(\Leftrightarrow     \left[ \begin{array}{l}(\sqrt 2  - 1)x - (2\sqrt 2  + 3)y + 7 - 2\sqrt 2  = 0\,\,\,\,\,\,\,\,(3)\\(\sqrt 2  + 1)x + (3 - 2\sqrt 2 )y - 7 - 2\sqrt 2  = 0 \,\,\,\,\,\,\,\,(4)\end{array} \right.\)

Thay lần lượt tọa độ của \(A\) và \(C\) vào vế trái của (3) ta được:

\((\sqrt 2  - 1).2 + 7 - 2\sqrt 2  = 5 ;\) \(     (\sqrt 2  - 1).1 - (2\sqrt 2  + 3).2 + 7 - 2\sqrt 2  =  - 5\sqrt 2. \)

Suy ra phương trình đường phân giác trong của góc \(B\) là

\((\sqrt 2  - 1)x - (2\sqrt 2  + 3)y + 7 - 2\sqrt 2  = 0.\)

Tâm \(I\) của đường tròn nội tiếp tam giác là giao điểm của các đường phân giác trong. Tọa độ của \(I\) là nghiệm của hệ

\(\left\{ \begin{array}{l}3x - y - 6 = 0\\(\sqrt 2  - 1)x - (2\sqrt 2  + 3)y + 7 - 2\sqrt 2  = 0\end{array} \right. \)

\(  \Leftrightarrow   \left\{ \begin{array}{l}x =  \dfrac{{5 + 2\sqrt 2 }}{{2 + \sqrt 2 }}\\y =  \dfrac{3}{{2 + \sqrt 2 }}\end{array} \right.\).

Vậy \(I = \left( { \dfrac{{5 + 2\sqrt 2 }}{{2 + \sqrt 2 }} ;  \dfrac{3}{{2 + \sqrt 2 }}} \right)\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.