Bài 26 trang 104 SBT Hình học 10 Nâng cao


Giải bài tập Bài 26 trang 104 SBT Hình học 10 Nâng cao

Lựa chọn câu để xem lời giải nhanh hơn

Cho tam giác \(ABC\) với \(A=(-1 ; 0), B=(2 ; 3), C=(3 ; -6)\) và đường thẳng \(\Delta : x - 2y - 3 = 0\).

LG a

Xét xem đường thẳng \(\Delta \) cắt cạnh nào của tam giác.

Lời giải chi tiết:

Thay lần lượt tọa độ của \(A, B, C\) vào vế trái phương trình của \(\Delta \), ta được:

\( - 1 - 3 =  - 4 ;\) \(   2 - 2.3 - 3 =  - 7 ;\) \(   3 - 2.( - 6) - 3 = 12\).

Vậy \(A, B\) nằm về một  phía của \(\Delta \), còn \(C\) nằm về phía kia. Do đó \(\Delta \) cắt hai cạnh \(AC\) và \(BC\) của tam giác \(ABC.\)

LG b

Tìm điểm M trên \(\Delta \) sao cho \(|\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC} |\) nhỏ nhất.

Lời giải chi tiết:

Cách 1:

Xét \(M(2y+3 ; y) \in \Delta \) thì \(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}\) \(  = ( - 6y - 5 ;  - 3y - 3)\).

Khi đó

\(|\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC} |\)

\( = \sqrt {{{(6y + 5)}^2} + {{(3y + 3)}^2}}\)

\(  = \sqrt {45{y^2} + 78y + 34} \).

\(|\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC} |\) nhỏ nhất  \( \Leftrightarrow   45{y^2} + 78y + 34\) nhỏ nhất \(y =  -  \dfrac{{13}}{{15}}\).

Từ đó ta tìm được \(M = \left( { \dfrac{{19}}{{15}} ;  -  \dfrac{{13}}{{15}}} \right)\).

Cách 2: 

Do \(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  = 3\overrightarrow {MG} \) (\(G\) là trọng tâm tam giác \(ABC\)) nên \(|\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC} |\) nhỏ nhất \( \Leftrightarrow    |\overrightarrow {MG} |\) nhỏ nhất \( \Leftrightarrow   M\) là hình chiếu vuông góc của \(G\) trên \(\Delta \). Ta tìm được \(M = \left( { \dfrac{{19}}{{15}} ;  -  \dfrac{{13}}{{15}}} \right)\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 3. Khoảng cách và góc.

>> Học trực tuyến Lớp 11 năm học mới trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài