Câu 8 trang 110 SGK Đại số 10 nâng cao


Chứng minh rằng:

Đề bài

Chứng minh rằng nếu a, b và c là độ dài ba cạnh một tam giác thì a2 + b2 + c2 < 2(ab + bc + ca).

Phương pháp giải - Xem chi tiết

Sử dụng bđt tam giác: Tổng hai cạnh luôn lớn hơn cạnh thứ ba.

Kết hợp tính chất nhân cả hai vế của bđt với một số dương thì bđt không đổi chiều.

Lời giải chi tiết

Do a, b, c là ba cạnh của tam giác nên

\(\eqalign{
& a < b + c \Rightarrow {a^2} < a\left( {b + c} \right) \cr &\Rightarrow {a^2} < ab + ac\,\,\,(1) \cr 
& b < a + c \Rightarrow {b^2} < b(a+c) \cr &\Rightarrow {b^2} <ba + bc\,\,(2) \cr 
& c < a + b \Rightarrow {c^2} < c(a+b)\cr & \Rightarrow {c^2} < ca + cb\,\,\,(3)\cr} \)

Cộng vế với vế của ba bất đẳng thức (1), (2), (3) ta được: \({a^2} + {b^2} + {c^2} < ab + ac + ba + bc + ca + cb\) \(\Rightarrow {a^2} + {b^2} + {c^2} < 2\left( {ab + bc + ca} \right)\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4 trên 6 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài