Câu 6.48 trang 205 SBT Đại số 10 Nâng cao


Đề bài

Cho \(\cos \alpha  = m\).

Hãy tính \({\cos ^2}\dfrac{\alpha }{2};{\sin ^2}\dfrac{\alpha }{2};{\tan ^2}\dfrac{\alpha }{2}\) theo m (giả sử \(\tan \dfrac{\alpha }{2}\) xác định)

Lời giải chi tiết

\(\begin{array}{l}{\cos ^2}\dfrac{\alpha }{2} = \dfrac{{1 + \cos \alpha }}{2} = \dfrac{{1 + m}}{2};\\{\sin ^2}\dfrac{\alpha }{2} = \dfrac{{1 - \cos \alpha }}{2} = \dfrac{{1 - m}}{2};\\{\tan ^2}\dfrac{\alpha }{2} = \dfrac{{1 - m}}{{1 + m}}.\end{array}\)

 

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.