Câu 6.46 trang 204 SBT Đại số 10 Nâng cao


Giải bài tập Câu 6.46 trang 204 SBT Đại số 10 Nâng cao

Lựa chọn câu để xem lời giải nhanh hơn

Cho \(\cos \alpha  = m\)

LG a

Hãy tính\(\cos 2\alpha ;{\sin ^2}2\alpha ;{\tan ^2}2\alpha \) theo \(m\) (giả sử \(\tan 2\alpha \) xác định)

Lời giải chi tiết:

 \(\cos 2\alpha  = 2{\cos ^2}\alpha  - 1 = 2{m^2} - 1;\)

\(\begin{array}{l}{\sin ^2}2\alpha  = 4{\sin ^2}\alpha {\cos ^2}\alpha \\ = 4{\cos ^2}\alpha \left( {1 - {{\cos }^2}\alpha } \right) = 4{m^2}\left( {1 - {m^2}} \right);\end{array}\)

\({\tan ^2}2\alpha  = \dfrac{{{{\sin }^2}2\alpha }}{{{{\cos }^2}2\alpha }} = \dfrac{{4{m^2}\left( {1 - {m^2}} \right)}}{{{{\left( {2{m^2} - 1} \right)}^2}}}\).

LG b

 Hỏi \(\sin 2\alpha ;\tan 2\alpha \) có xác định duy nhất bởi \(m\) hay không?

Lời giải chi tiết:

 Không, chẳng hạn \(\cos \dfrac{\pi }{3} = \cos \left( { - \dfrac{\pi }{3}} \right) = \dfrac{1}{2},\) nhưng

\(\sin \dfrac{{2\pi }}{3} = \dfrac{{\sqrt 3 }}{2},\sin \left( { - \dfrac{{2\pi }}{3}} \right) =  - \dfrac{{\sqrt 3 }}{2};\) \(\tan \dfrac{{2\pi }}{3} =  - \sqrt 3 ,\tan \left( { - \dfrac{{2\pi }}{3}} \right) = \sqrt 3 .\)

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí