Câu 3 trang 109 SGK Đại số 10 nâng cao

Bình chọn:
3.4 trên 5 phiếu

Chứng minh rằng đẳng thức sau xảy ra với mọi các số thực a, b, c.

Chứng minh rằng a2 + b2 + c2 ≥ ab + bc + ca với mọi số thực a, b, c.

Đẳng thức xảy ra khi và chỉ khi a = b = c.

Giải

Ta có:

a2 + b2 + c2 ≥ ab + bc + ca

⇔ a2 + b2 + c2 – ab – bc – ca ≥ 0

⇔ 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca ≥ 0

⇔ (a - b)2 + (b - c)2 + (c - a)2 ≥ 0 (luôn đúng)

Đẳng thức xảy ra khi và chỉ khi a – b = b – c = c – a = 0, tức là a = b = c

Loigiaihay.com

Các bài liên quan: - Bài 1: Bất đẳng thức và chứng minh bất đẳng thức

>>Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu