Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
ÔN TẬP CUỐI NĂM ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO
Câu 13 trang 225 SGK Đại số và Giải tích 11 Nâng cao>
Cho dãy số (un) xác định bởi
Cho dãy số (un) xác định bởi
\({u_1} = 5\,\text{ và }\,{u_n} = {u_{n - 1}} - 2\) với mọi n ≥ 2
LG a
Hãy tìm số hạng tổng quát của dãy số (un)
Lời giải chi tiết:
Ta có: \({u_{n + 1}} - {u_n} = - 2;\forall n \ge 1\)
Suy ra: (un) là một cấp số cộng có số hạng đầu u1 = 5 và công sai d = -2 do đó :
\({u_n} = {u_1} + \left( {n - 1} \right)d \) \(= 5 + \left( {n - 1} \right)\left( { - 2} \right) = - 2n + 7\)
LG b
Hãy tính tổng 100 số hạng đầu tiên của dãy số (un).
Lời giải chi tiết:
\({S_{100}} = {{100} \over 2}\left( {2{u_1} + 99d} \right) \) \(= 50\left( {10 - 198} \right) = - 9400\)
Loigiaihay.com




